chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

預測深度神經(jīng)網(wǎng)絡泛化性能差異

Tensorflowers ? 來源:YXQ ? 作者:h1654155287.6125 ? 2019-07-28 10:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度神經(jīng)網(wǎng)絡 (DNN) 是近年來機器學習研究進展的基礎,也是在圖像識別、圖像分割、機器翻譯等諸多領域能夠取得突破性進展的重要原因。

盡管 DNN 無處不在,研究人員仍在嘗試全面了解深度神經(jīng)網(wǎng)絡的基本原理。例如,傳統(tǒng)理論(如 VC 維和 Rademacher 復雜度)認為:在處理未知數(shù)據(jù)時,過參數(shù)化函數(shù) (over-parameterized functions) 的泛化能力較差;但在近期研究中卻發(fā)現(xiàn),大規(guī)模過參數(shù)化的函數(shù)(參數(shù)比數(shù)據(jù)點多出幾個數(shù)量級)卻擁有出色的泛化能力,更深層次地地理解泛化對于理論的落地和DNN理論的實現(xiàn)從而改進模型是很有必要的。

在理解泛化之前,我們需了解 Generalization Gap(泛化性能差異)這一重要概念。泛化性能差異即模型針對相同分布的訓練數(shù)據(jù)和未知數(shù)據(jù)所表現(xiàn)出的性能差異。在致力獲得更好的 DNN 泛化邊界(即泛化性能差異的上限)的過程中,研究人員取得了重大進展。但是,這類邊界通常仍會大大高估真實的泛化性能差異水平,并且無法解釋部分模型為何具有出色的泛化能力。

另一方面,研究人員基于支持向量機 (support-vector machines) 等淺層模型對邊緣 (notion) 概念(即數(shù)據(jù)點與決策邊界之間的距離)進行了大量研究,最終發(fā)現(xiàn)此概念與模型針對未知數(shù)據(jù)所表現(xiàn)出的泛化能力密切相關?;诖隧棸l(fā)現(xiàn),研究人員已將使用邊緣研究泛化性能差異的方法拓展至 DNN 領域,從而使泛化性能差異的理論上限得到了高度優(yōu)化,但此方式并未能顯著提高泛化模型的預測能力。

注:理論上限 鏈接

支持向量機決策邊界示例。w?x-b=0 定義的超平面是此線性分類器的“決策邊界”,即在該線性分類器下,超平面上的每個點 x 在任一類中的可能性相等。

ICLR 2019 論文《使用邊緣分布預測深度網(wǎng)絡的泛化性能差異》(Predicting the Generalization Gap in Deep Networks with Margin Distributions) 中,我們提議在各層網(wǎng)絡上使用標準化的邊緣分布 (Normalized Margin Distribution) 來預測泛化性能差異。

我們通過實踐研究了邊緣分布與泛化之間的關系,最終發(fā)現(xiàn)在對距離進行適當標準化 (Normalization) 后,邊緣分布的一些基本數(shù)據(jù)可以準確預測泛化性能差異。此外,我們還通過 GitHub 代碼庫將所有模型作為數(shù)據(jù)集公開發(fā)布,以便您進行泛化研究。

每張圖均對應一個基于 CIFAR-10 訓練的卷積神經(jīng)網(wǎng)絡(分類準確率各不相同)。三個模型各有差異,從左至右,泛化能力逐漸增強。其中,x 軸表示 4 個層的神經(jīng)網(wǎng)絡標準化邊緣分布,y 軸表示此分布的概率密度。標準化的邊緣分布與測試準確率密切相關,這表明我們可以將此類分布用作預測網(wǎng)絡 Generalization Gap(泛化性能差異)的指標。如需了解這些神經(jīng)網(wǎng)絡的更多詳情,請參閱我們的論文。

邊緣分布作為泛化性能差異的預測指標

如果邊緣分布統(tǒng)計數(shù)據(jù)可以真實預測泛化性能差異,那么簡單的預測方案應能建立起二者的關系。

因此,我們選擇使用線性回歸作為預測指標。我們發(fā)現(xiàn),在對邊緣分布統(tǒng)計數(shù)據(jù)進行對數(shù)轉(zhuǎn)換后,轉(zhuǎn)換后的數(shù)據(jù)與 泛化性能差異之間幾乎完全呈線性關系(參見下圖)。事實上,相較于其他現(xiàn)有的泛化測量方法,我們提出的方案可提供更準確的預測。這表明,邊緣分布可能包含與深度模型泛化性能差異相關的重要信息。

基于 CIFAR-100 和 ResNet-32 得出的 Generalization Gap 預測值(x 軸)與實際值(y 軸)關系圖。數(shù)據(jù)點的分布趨近于貼近對角線,這表明該對數(shù)線性模型的預測值非常符合實際的 Generalization Gap 水平。

深度模型泛化數(shù)據(jù)集

除論文之外,我們還介紹了深度模型泛化 (DEMOGEN) 數(shù)據(jù)集。該數(shù)據(jù)集包含 756 個經(jīng)過訓練的深度模型,以及這些深度模型在 CIFAR-10 和 CIFAR-100 數(shù)據(jù)集上的訓練與及測試表現(xiàn)。這些模型均為 CNN(所用架構類似于“網(wǎng)絡中的網(wǎng)絡”(Network-in-Network))和 ResNet-32 的變體,它們采用當下流行的各類正則化技術和超參數(shù)設置,因而也產(chǎn)生了廣泛的泛化行為。

例如,基于 CIFAR-10 訓練的 CNN 模型的測試準確率在 60% 至 90.5% 之間,泛化性能差異率則介于 1% 至 35% 之間。如需了解數(shù)據(jù)集詳情,請查看我們的論文或 GitHub 代碼庫。發(fā)布數(shù)據(jù)集時,我們還為其添加了許多實用程序,以便您能夠輕松加載模型,并重現(xiàn)論文中所展示的結(jié)果。

我們希望本次研究和 DEMOGEN 數(shù)據(jù)集能為社區(qū)提供便利工具,讓社區(qū)成員無需重新訓練大量模型,即可研究深度學習領域的泛化問題而提供便利工具。同時,我們也希望本次研究成果能夠提供助力,以幫助我們?nèi)蘸髮﹄[藏層中的泛化性能差異預測指標和邊緣分布進行更加深入的研究。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:預測深度神經(jīng)網(wǎng)絡泛化性能差異

文章出處:【微信號:tensorflowers,微信公眾號:Tensorflowers】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    NMSIS神經(jīng)網(wǎng)絡庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    構建CNN網(wǎng)絡模型并優(yōu)化的一般化建議

    :Dropout層隨機跳過神經(jīng)網(wǎng)絡模型中某些神經(jīng)元之間的連接,通過隨機制造缺陷進行訓練提升整個神經(jīng)網(wǎng)絡的魯棒性。 6)指定合理的學習率策略:一旦神經(jīng)網(wǎng)絡的準確率飽和,那么學習率應當
    發(fā)表于 10-28 08:02

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓練一個卷積神經(jīng)網(wǎng)絡(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓練并保存,就可以用于對新圖像進行推理和預測。要使用生成的模型進行推理,可以按照以下步驟進行操作: 1.
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(LNN):時間連續(xù)性與動態(tài)適應性的神經(jīng)網(wǎng)絡

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡架構,其設計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構,盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?646次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡</b>(LNN):時間連續(xù)性與動態(tài)適應性的<b class='flag-5'>神經(jīng)網(wǎng)絡</b>

    神經(jīng)網(wǎng)絡的并行計算與加速技術

    問題。因此,并行計算與加速技術在神經(jīng)網(wǎng)絡研究和應用中變得至關重要,它們能夠顯著提升神經(jīng)網(wǎng)絡性能和效率,滿足實際應用中對快速響應和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡并行
    的頭像 發(fā)表于 09-17 13:31 ?869次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡</b>的并行計算與加速技術

    無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關系,因此構建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡來實現(xiàn)轉(zhuǎn)角預測,并采用改進遺傳算法來訓練網(wǎng)絡結(jié)構與參數(shù),借助
    發(fā)表于 06-25 13:06

    使用BP神經(jīng)網(wǎng)絡進行時間序列預測

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡進行時間序列預測是一種常見且有效的方法。以下是一個基于BP神經(jīng)網(wǎng)絡進行時間序列預測的詳細步驟和考慮因素: 一、數(shù)據(jù)準備 收集數(shù)據(jù) :
    的頭像 發(fā)表于 02-12 16:44 ?1251次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1281次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可能導致模型在
    的頭像 發(fā)表于 02-12 15:51 ?1403次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    自學習能力 : BP神經(jīng)網(wǎng)絡能夠通過訓練數(shù)據(jù)自動調(diào)整網(wǎng)絡參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務,無需人工進行復雜的特征工程。 化能力強 : BP神經(jīng)網(wǎng)絡通過訓練數(shù)據(jù)學習到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?1527次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    神經(jīng)網(wǎng)絡(即反向傳播神經(jīng)網(wǎng)絡)的核心,它建立在梯度下降法的基礎上,是一種適合于多層神經(jīng)元網(wǎng)絡的學習算法。該算法通過計算每層網(wǎng)絡的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權重,使得
    的頭像 發(fā)表于 02-12 15:18 ?1256次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    BP神經(jīng)網(wǎng)絡深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1323次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結(jié)構 BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:13 ?1486次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?832次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    所擬合的數(shù)學模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設計的。然而,數(shù)據(jù)科學中常用的神經(jīng)網(wǎng)絡作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應用中提供最先進性能的機器學習模型。近年來,由于
    的頭像 發(fā)表于 01-09 10:24 ?2213次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法