chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

升級神經網絡可以更好地發(fā)現與疾病相關的基因

獨愛72H ? 來源:教育新聞網 ? 作者:教育新聞網 ? 2020-05-06 16:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(文章來源:教育新聞網)

人工神經網絡揭示了大量基因表達數據中的模式,并發(fā)現了與疾病相關的基因。來自瑞典林雪平大學的開發(fā)人員希望該方法最終可以應用于精密醫(yī)學和個性化治療。

科學家根據不同蛋白質或基因如何相互作用來繪制生物系統(tǒng)圖。他們使用人工智能(AI),研究了是否有可能通過深度學習發(fā)現生物網絡,其中通過實驗數據訓練稱為神經網絡的實體。

“我們第一次使用深度學習來發(fā)現與疾病相關的基因。這是分析大量生物信息或“大數據”的一種非常有效的方法,”林雪平大學物理,化學和生物學系(IFM)的Sanjiv Dwivedi說。

科學家使用了一個大型數據庫,其中包含有關許多人中20,000個基因的表達模式的信息。這些信息是“未分類的”,因為研究人員沒有提供人工神經網絡數據,即哪些基因表達模式來自疾病患者,哪些來自健康人。然后訓練AI模型以發(fā)現基因表達模式。

人工神經網絡由幾層組成,其中對信息進行數學處理。該系統(tǒng)包括傳遞信息處理結果的輸入層和輸出層。在這兩層之間是幾個隱藏層,在其中進行計算。當科學家訓練人工神經網絡時,他們想知道是否有可能確切了解其工作原理

“當我們分析神經網絡時,結果發(fā)現第一隱藏層在很大程度上代表了各種蛋白質之間的相互作用。相反,在模型的更深層,在第三層,我們發(fā)現了不同細胞類型的組。鑒于我們的網絡是從未分類的基因表達數據開始的,這種與生物學相關的分組是自動產生的,這非常有趣?!?IFM高級講師兼研究負責人Mika Gustafsson說。

然后,科學家們研究了他們的基因表達模型是否可以用來確定哪些基因表達模式與疾病有關,哪些與健康有關。他們證實,該模型找到了可驗證人體生物學機制的相關模式。由于該模型是使用未分類的數據訓練的,因此人工神經網絡可能已經找到了全新的模式。研究人員現在計劃從生物學的角度研究這種先前未知的模式是否相關。

“我們認為,該領域取得進展的關鍵是了解神經網絡。這可以教會我們有關生物學環(huán)境的新知識,例如許多因素相互作用的疾病。我們相信,我們的方法所提供的模型更易于推廣,可用于許多不同類型的生物學信息?!?br /> Gustafsson說。

(責任編輯:fqj)

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103635
  • 生物學
    +關注

    關注

    0

    文章

    26

    瀏覽量

    13078
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡網絡結構設計原則

    ,僅作為數據輸入的接口。輸入層的神經元個數通常與輸入數據的特征數量相對應。 隱藏層 :對輸入信號進行非線性變換,是神經網絡的核心部分,負責學習輸入與輸出之間的復雜映射關系。隱藏層可以有一層或多層,層數和
    的頭像 發(fā)表于 02-12 16:41 ?744次閱讀

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    BP神經網絡的優(yōu)缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?924次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?771次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經網絡的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負責接收外部輸入數據,這些數據隨后被傳遞到隱藏層。隱藏層是BP神經網絡的核心部分,它可以通過一層或多層神經元對輸入數據進行加權求和,并通過非線性激活函數(如ReLU、sigmoid或tan
    的頭像 發(fā)表于 02-12 15:13 ?858次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1196次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡與傳統(tǒng)神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統(tǒng)神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)神經網絡
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統(tǒng)神經網絡的區(qū)別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經網絡的類型也在不斷增加,其中循環(huán)神經網絡(RNN)和傳統(tǒng)神經網絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1129次閱讀

    LSTM神經網絡的結構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經網絡是一種特殊的循環(huán)神經網絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數據時表現出色。以下是LSTM神經網絡
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經網絡與傳統(tǒng)RNN的區(qū)別

    在深度學習領域,循環(huán)神經網絡(RNN)因其能夠處理序列數據而受到廣泛關注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經網絡應運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1215次閱讀

    LSTM神經網絡的基本原理 如何實現LSTM神經網絡

    LSTM(長短期記憶)神經網絡是一種特殊的循環(huán)神經網絡(RNN),它能夠學習長期依賴信息。在處理序列數據時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    Moku人工神經網絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經網絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調節(jié)校準、閉環(huán)反饋等應用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發(fā)展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發(fā)表于 10-24 13:56

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發(fā)表于 09-18 15:14