chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何避免在數(shù)據(jù)準(zhǔn)備過程中的數(shù)據(jù)泄漏

數(shù)據(jù)分析與開發(fā) ? 來源:數(shù)據(jù)派 ? 2020-08-27 15:19 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

數(shù)據(jù)準(zhǔn)備是將原始數(shù)據(jù)轉(zhuǎn)換為適合建模的形式的過程。 原始的數(shù)據(jù)準(zhǔn)備方法是在評估模型性能之前對整個(gè)數(shù)據(jù)集進(jìn)行處理。這會(huì)導(dǎo)致數(shù)據(jù)泄漏的問題, 測試集中的數(shù)據(jù)信息會(huì)泄露到訓(xùn)練集中。那么在對新數(shù)據(jù)進(jìn)行預(yù)測時(shí),我們會(huì)錯(cuò)誤地估計(jì)模型性能。 為了避免數(shù)據(jù)泄漏,我們需要謹(jǐn)慎使用數(shù)據(jù)準(zhǔn)備技術(shù),同時(shí)也要根據(jù)所使用的模型評估方案靈活選擇,例如訓(xùn)練測試集劃分或k折交叉驗(yàn)證。 在本教程中,您將學(xué)習(xí)在評估機(jī)器學(xué)習(xí)模型時(shí)如何避免在數(shù)據(jù)準(zhǔn)備過程中的數(shù)據(jù)泄漏。 完成本教程后,您將會(huì)知道:

應(yīng)用于整個(gè)數(shù)據(jù)集的簡單的數(shù)據(jù)準(zhǔn)備方法會(huì)導(dǎo)致數(shù)據(jù)泄漏,從而導(dǎo)致對模型性能的錯(cuò)誤估計(jì)。

為了避免數(shù)據(jù)泄漏,數(shù)據(jù)準(zhǔn)備應(yīng)該只在訓(xùn)練集中進(jìn)行。

如何在Python中用訓(xùn)練測試集劃分和k折交叉驗(yàn)證實(shí)現(xiàn)數(shù)據(jù)準(zhǔn)備而又不造成數(shù)據(jù)泄漏。在我的新書

(https://machinelearningmastery.com/data-preparation-for-machine-learning/)

中了解有關(guān)數(shù)據(jù)清理,特征選擇,數(shù)據(jù)轉(zhuǎn)換,降維以及更多內(nèi)容,包含30個(gè)循序漸進(jìn)的教程和完整的Python源代碼。

讓我們開始吧。 目錄 本教程分為三個(gè)部分: 1.原始數(shù)據(jù)準(zhǔn)備方法存在的問題 2.用訓(xùn)練集和測試集進(jìn)行數(shù)據(jù)準(zhǔn)備

用原始數(shù)據(jù)準(zhǔn)備方法進(jìn)行訓(xùn)練-測試評估

用正確的數(shù)據(jù)準(zhǔn)備方法進(jìn)行訓(xùn)練-測試評估

3 .用K折交叉驗(yàn)證進(jìn)行數(shù)據(jù)準(zhǔn)備

用原始數(shù)據(jù)準(zhǔn)備方法進(jìn)行交叉驗(yàn)證評估

用正確的數(shù)據(jù)準(zhǔn)備方法進(jìn)行交叉驗(yàn)證評估

原始數(shù)據(jù)準(zhǔn)備方法的問題 應(yīng)用數(shù)據(jù)準(zhǔn)備技術(shù)處理數(shù)據(jù)的方式很重要。 一種常見的方法是首先將一個(gè)或多個(gè)變換應(yīng)用于整個(gè)數(shù)據(jù)集。然后將數(shù)據(jù)集分為訓(xùn)練集和測試集,或使用k折交叉驗(yàn)證來擬合并評估機(jī)器學(xué)習(xí)模型。 1.準(zhǔn)備數(shù)據(jù)集 2.分割數(shù)據(jù) 3.評估模型 盡管這是一種常見的方法,但在大多數(shù)情況下很可能是不正確的。 在分割數(shù)據(jù)進(jìn)行模型評估之前使用數(shù)據(jù)準(zhǔn)備技術(shù)可能會(huì)導(dǎo)致數(shù)據(jù)泄漏, 進(jìn)而可能導(dǎo)致錯(cuò)誤評估模型的性能。 數(shù)據(jù)泄漏是指保留數(shù)據(jù)集(例如測試集或驗(yàn)證數(shù)據(jù)集)中的信息出現(xiàn)在訓(xùn)練數(shù)據(jù)集中,并被模型使用的問題。這種泄漏通常很小且微妙,但會(huì)對性能產(chǎn)生顯著影響。 ‘’…泄漏意味著信息會(huì)提供給模型,這給它做出更好的預(yù)測帶來了不真實(shí)的優(yōu)勢。當(dāng)測試數(shù)據(jù)泄漏到訓(xùn)練集中時(shí),或者將來的數(shù)據(jù)泄漏到過去時(shí),可能會(huì)發(fā)生這種情況。當(dāng)模型應(yīng)用到現(xiàn)實(shí)世界中進(jìn)行預(yù)測時(shí),只要模型訪問了它不應(yīng)該訪問的信息,就是泄漏。 —第93頁,機(jī)器學(xué)習(xí)的特征工程,2018年。” 將數(shù)據(jù)準(zhǔn)備技術(shù)應(yīng)用于整個(gè)數(shù)據(jù)集會(huì)發(fā)生數(shù)據(jù)泄漏。 數(shù)據(jù)泄漏的直接形式是指我們在測試數(shù)據(jù)集上訓(xùn)練模型。而當(dāng)前情況是數(shù)據(jù)泄漏的間接形式,是指訓(xùn)練過程中,模型可以使用匯總統(tǒng)計(jì)方法捕獲到有關(guān)測試數(shù)據(jù)集的一些知識(shí)。對于初學(xué)者而言很難察覺到第二種類型的數(shù)據(jù)泄露。 “重采樣的另一個(gè)方面與信息泄漏的概念有關(guān),信息泄漏是在訓(xùn)練過程中(直接或間接)使用測試集數(shù)據(jù)。這可能會(huì)導(dǎo)致過于樂觀的結(jié)果,這些結(jié)果無法在將來的數(shù)據(jù)上復(fù)現(xiàn)。 —第55頁,特征工程與選擇,2019年?!? 例如,在某些情況下我們要對數(shù)據(jù)進(jìn)行歸一化,即將輸入變量縮放到0-1范圍。 當(dāng)我們對輸入變量進(jìn)行歸一化時(shí),首先要計(jì)算每個(gè)變量的最大值和最小值, 并利用這些值去縮放變量. 然后將數(shù)據(jù)集分為訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集,但是這樣的話訓(xùn)練數(shù)據(jù)集中的樣本對測試數(shù)據(jù)集中的數(shù)據(jù)信息有所了解。數(shù)據(jù)已按全局最小值和最大值進(jìn)行了縮放,因此,他們掌握了更多有關(guān)變量全局分布的信息。 幾乎所有的數(shù)據(jù)準(zhǔn)備技術(shù)都會(huì)導(dǎo)致相同類型的泄漏。例如,標(biāo)準(zhǔn)化估計(jì)了域的平均值和標(biāo)準(zhǔn)差,以便縮放變量;甚至是估算缺失值的模型或統(tǒng)計(jì)方法也會(huì)從全部數(shù)據(jù)集中采樣來填充訓(xùn)練數(shù)據(jù)集中的值。 解決方案很簡單。 數(shù)據(jù)準(zhǔn)備工作只能在訓(xùn)練數(shù)據(jù)集中進(jìn)行。也就是說,任何用于數(shù)據(jù)準(zhǔn)備工作的系數(shù)或模型都只能使用訓(xùn)練數(shù)據(jù)集中的數(shù)據(jù)行。 一旦擬合完,就可以將數(shù)據(jù)準(zhǔn)備算法或模型應(yīng)用于訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集。 1.分割數(shù)據(jù)。 2.在訓(xùn)練數(shù)據(jù)集上進(jìn)行數(shù)據(jù)準(zhǔn)備。 3.將數(shù)據(jù)準(zhǔn)備技術(shù)應(yīng)用于訓(xùn)練和測試數(shù)據(jù)集。 4.評估模型。 更普遍的是,僅在訓(xùn)練數(shù)據(jù)集上進(jìn)行整個(gè)建模工作來避免數(shù)據(jù)泄露。這可能包括數(shù)據(jù)轉(zhuǎn)換,還包括其他技術(shù),例如特征選擇,降維,特征工程等等。這意味著所謂的“模型評估”實(shí)際上應(yīng)稱為“建模過程評估”。 “為了使任何重采樣方案都能產(chǎn)生可泛化到新數(shù)據(jù)的性能估算,建模過程中必須包含可能顯著影響模型有效性的所有步驟。

—第54-55頁,特征工程與選擇,2019年?!?/p>

既然我們已經(jīng)熟悉如何應(yīng)用數(shù)據(jù)準(zhǔn)備以避免數(shù)據(jù)泄漏,那么讓我們來看一些可行的示例。 準(zhǔn)備訓(xùn)練和測試數(shù)據(jù)集 在本節(jié)中,我們利用合成二進(jìn)制分類數(shù)據(jù)集分出訓(xùn)練集和測試集,并使用這兩個(gè)數(shù)據(jù)集評估邏輯回歸模型, 其中輸入變量已歸一化。 首先,讓我們定義合成數(shù)據(jù)集。 我們將使用make_classification()函數(shù)創(chuàng)建包含1000行數(shù)據(jù)和20個(gè)數(shù)值型特征的數(shù)據(jù)。下面的示例創(chuàng)建了數(shù)據(jù)集并總結(jié)了輸入和輸出變量數(shù)組的形狀。

運(yùn)行這段代碼會(huì)得到一個(gè)數(shù)據(jù)集, 數(shù)據(jù)集的輸入部分有1000行20列, 20列對應(yīng)20個(gè)輸入變量, 輸出變量包含1000個(gè)樣例對應(yīng)輸入數(shù)據(jù),每行一個(gè)值。

接下來我們要在縮放后的數(shù)據(jù)上評估我們的模型, 首先從原始或者說錯(cuò)誤的方法開始。 用原始方法進(jìn)行訓(xùn)練集-測試集評估 原始方法首先對整個(gè)數(shù)據(jù)集應(yīng)用數(shù)據(jù)準(zhǔn)備方法,其次分割數(shù)據(jù)集,最后評估模型。 我們可以使用MinMaxScaler類對輸入變量進(jìn)行歸一化,該類首先使用默認(rèn)配置將數(shù)據(jù)縮放到0-1范圍,然后調(diào)用fit_transform()函數(shù)將變換擬合到數(shù)據(jù)集并同步應(yīng)用于數(shù)據(jù)集。得到歸一化的輸入變量,其中數(shù)組中的每一列都分別進(jìn)行過歸一化(例如,計(jì)算出了自己的最小值和最大值)。

下一步,我們使用train_test_split函數(shù)將數(shù)據(jù)集分成訓(xùn)練集和測試集, 其中67%的數(shù)據(jù)用作訓(xùn)練集,剩下的33%用作測試集。

通過LogisticRegression 類定義邏輯回歸算法,使用默認(rèn)配置, 并擬合訓(xùn)練數(shù)據(jù)集。

擬合模型可以對測試集的輸入數(shù)據(jù)做出預(yù)測,然后我們可以將預(yù)測值與真實(shí)值進(jìn)行比較,并計(jì)算分類準(zhǔn)確度得分。

把上述代碼結(jié)合在一起,下面列出了完整的示例。

運(yùn)行上述代碼, 首先會(huì)將數(shù)據(jù)歸一化, 然后把數(shù)據(jù)分成測試集和訓(xùn)練集,最后擬合并評估模型。 由于學(xué)習(xí)算法和評估程序的隨機(jī)性,您的具體結(jié)果可能會(huì)有所不同。 在本例中, 模型在測試集上的準(zhǔn)確率為84.848%

我們已經(jīng)知道上述代碼中存在數(shù)據(jù)泄露的問題, 所以模型的準(zhǔn)確率估算是有誤差的。 接下來,讓我們來學(xué)習(xí)如何正確的進(jìn)行數(shù)據(jù)準(zhǔn)備以避免數(shù)據(jù)泄露。 用正確的數(shù)據(jù)準(zhǔn)備方法進(jìn)行訓(xùn)練集-測試集評估 利用訓(xùn)練集-測試集分割評估來執(zhí)行數(shù)據(jù)準(zhǔn)備的正確方法是在訓(xùn)練集上擬合數(shù)據(jù)準(zhǔn)備方法,然后將變換應(yīng)用于訓(xùn)練集和測試集。

這要求我們首先將數(shù)據(jù)分為訓(xùn)練集和測試集。 然后,我們可以定義MinMaxScaler并在訓(xùn)練集上調(diào)用fit()函數(shù),然后在訓(xùn)練集和測試集上應(yīng)用transform()函數(shù)來歸一化這兩個(gè)數(shù)據(jù)集。

我們只用了訓(xùn)練集而非整個(gè)數(shù)據(jù)集中的數(shù)據(jù)來對每個(gè)輸入變量計(jì)算最大值和最小值, 這樣就可以避免數(shù)據(jù)泄露的風(fēng)險(xiǎn)。 然后可以按照之前的評估過程對模型評估。 整合之后, 完整代碼如下:

運(yùn)行示例會(huì)將數(shù)據(jù)分為訓(xùn)練集和測試集,對數(shù)據(jù)進(jìn)行正確的歸一化,然后擬合并評估模型。 由于學(xué)習(xí)算法和評估程序的隨機(jī)性,您的具體結(jié)果可能會(huì)有所不同。 在本例中,我們可以看到該模型在測試集上預(yù)測準(zhǔn)確率約為85.455%,這比上一節(jié)中由于數(shù)據(jù)泄漏達(dá)到84.848%的準(zhǔn)確性更高。 我們預(yù)期數(shù)據(jù)泄漏會(huì)導(dǎo)致對模型性能的錯(cuò)誤估計(jì),并以為數(shù)據(jù)泄漏會(huì)樂觀估計(jì),例如有更好的性能。然而在示例中,我們可以看到數(shù)據(jù)泄漏導(dǎo)致性能更差了。這可能是由于預(yù)測任務(wù)的難度。

用K折交叉驗(yàn)證進(jìn)行數(shù)據(jù)準(zhǔn)備 在本節(jié)中,我們將在合成的二分類數(shù)據(jù)集上使用K折交叉驗(yàn)證評估邏輯回歸模型, 其中輸入變量均已歸一化。 您可能還記得k折交叉驗(yàn)證涉及到將數(shù)據(jù)集分成k個(gè)不重疊的數(shù)據(jù)組。然后我們只用一組數(shù)據(jù)作為測試集, 其余的數(shù)據(jù)都作為訓(xùn)練集對模型進(jìn)行訓(xùn)練。將此過程重復(fù)K次,以便每組數(shù)據(jù)都有機(jī)會(huì)用作保留測試集。最后輸出所有評估結(jié)果的均值。 k折交叉驗(yàn)證過程通常比訓(xùn)練測試集劃分更可靠地估計(jì)了模型性能,但由于反復(fù)擬合和評估,它在計(jì)算成本上更加昂貴。 我們首先來看一下使用k折交叉驗(yàn)證的原始數(shù)據(jù)準(zhǔn)備。 用K折交叉驗(yàn)證進(jìn)行原始數(shù)據(jù)準(zhǔn)備 具有交叉驗(yàn)證的原始數(shù)據(jù)準(zhǔn)備首先要對數(shù)據(jù)進(jìn)行變換,然后再進(jìn)行交叉驗(yàn)證過程。 我們將使用上一節(jié)中準(zhǔn)備的合成數(shù)據(jù)集并直接將數(shù)據(jù)標(biāo)準(zhǔn)化。

首先要定義k折交叉驗(yàn)證步驟。我們將使用重復(fù)分層的10折交叉驗(yàn)證,這是分類問題的最佳實(shí)踐。重復(fù)是指整個(gè)交叉驗(yàn)證過程要重復(fù)多次,在本例中要重復(fù)三次。分層意味著每組樣本各類別樣本的比例與原始數(shù)據(jù)集中相同。我們將使用k = 10的10折交叉驗(yàn)證。 我們可以使用RepeatedStratifiedKFold(設(shè)置三次重復(fù)以及10折)來實(shí)現(xiàn)上述方案,然后使用cross_val_score()函數(shù)執(zhí)行該過程,傳入定義好的模型,交叉驗(yàn)證對象和要計(jì)算的度量(在本例中使用的是準(zhǔn)確率 )。

然后,我們可以記錄所有重復(fù)和折疊的平均準(zhǔn)確度。 綜上,下面列出了使用帶有數(shù)據(jù)泄漏的數(shù)據(jù)準(zhǔn)備進(jìn)行交叉驗(yàn)證評估模型的完整示例。

運(yùn)行上述代碼, 首先對數(shù)據(jù)進(jìn)行歸一化,然后使用重復(fù)分層交叉驗(yàn)證對模型進(jìn)行評估。 由于學(xué)習(xí)算法和評估程序的隨機(jī)性,您的具體結(jié)果可能會(huì)有所不同。 在本例中,我們可以看到該模型達(dá)到了約85.300%的估計(jì)準(zhǔn)確度,由于數(shù)據(jù)準(zhǔn)備過程中存在數(shù)據(jù)泄漏,我們知道該估計(jì)準(zhǔn)確度是不正確的。

接下來,讓我們看看如何使用交叉驗(yàn)證評估模型同時(shí)避免數(shù)據(jù)泄漏。 具有正確數(shù)據(jù)準(zhǔn)備的交叉驗(yàn)證評估 使用交叉驗(yàn)證時(shí),沒有數(shù)據(jù)泄漏的數(shù)據(jù)準(zhǔn)備工作更具挑戰(zhàn)性。 它要求在訓(xùn)練集上進(jìn)行數(shù)據(jù)準(zhǔn)備,并在交叉驗(yàn)證過程中將其應(yīng)用于訓(xùn)練集和測試集,例如行的折疊組。 我們可以通過定義一個(gè)建模流程來實(shí)現(xiàn)此目的,在要擬合和評估的模型中該流程定義了要執(zhí)行的數(shù)據(jù)準(zhǔn)備步驟的順序和結(jié)束條件。 “ 為了提供可靠的方法,我們應(yīng)該限制自己僅在訓(xùn)練集上開發(fā)一系列預(yù)處理技術(shù),然后將這些技術(shù)應(yīng)用于將來的數(shù)據(jù)(包括測試集)。

—第55頁,特征工程與選擇,2019年。”

評估過程從錯(cuò)誤地僅評估模型變?yōu)檎_地將模型和整個(gè)數(shù)據(jù)準(zhǔn)備流程作為一個(gè)整體單元一起評估。 這可以使用Pipeline類來實(shí)現(xiàn)。 此類使用一個(gè)包含定義流程的步驟的列表。列表中的每個(gè)步驟都是一個(gè)包含兩個(gè)元素的元組。第一個(gè)元素是步驟的名稱(字符串),第二個(gè)元素是步驟的配置對象,例如變換或模型。盡管我們可以在序列中使用任意數(shù)量的轉(zhuǎn)換,但是僅在最后一步才應(yīng)用到模型。

之后我們把配置好的對象傳入cross_val_score()函數(shù)進(jìn)行評估。

綜上所述,下面列出了使用交叉驗(yàn)證時(shí)正確執(zhí)行數(shù)據(jù)準(zhǔn)備而不會(huì)造成數(shù)據(jù)泄漏的完整示例。

運(yùn)行該示例可在評估過程進(jìn)行交叉驗(yàn)證時(shí)正確地歸一化數(shù)據(jù),以避免數(shù)據(jù)泄漏。 由于學(xué)習(xí)算法和評估程序的隨機(jī)性,您的具體結(jié)果可能會(huì)有所不同。 本例中,我們可以看到該模型的估計(jì)準(zhǔn)確性約為85.433%,而數(shù)據(jù)泄漏方法的準(zhǔn)確性約為85.300%。 與上一節(jié)中的訓(xùn)練測試集劃分示例一樣,消除數(shù)據(jù)泄露帶來了性能上的一點(diǎn)提高, 雖然直覺上我們會(huì)認(rèn)為它應(yīng)該會(huì)帶來下降, 以為數(shù)據(jù)泄漏會(huì)導(dǎo)致對模型性能的樂觀估計(jì)。但是,這些示例清楚地表明了數(shù)據(jù)泄漏確實(shí)會(huì)影響模型性能的估計(jì)以及在拆分?jǐn)?shù)據(jù)后通過正確執(zhí)行數(shù)據(jù)準(zhǔn)備來糾正數(shù)據(jù)泄漏的方法。

總結(jié) 在本教程中,您學(xué)習(xí)了評估機(jī)器學(xué)習(xí)模型時(shí)如何避免在數(shù)據(jù)準(zhǔn)備期間出現(xiàn)數(shù)據(jù)泄露的問題。 具體來說,您了解到:

直接將數(shù)據(jù)準(zhǔn)備方法應(yīng)用于整個(gè)數(shù)據(jù)集會(huì)導(dǎo)致數(shù)據(jù)泄漏,從而導(dǎo)致對模型性能的錯(cuò)誤估計(jì)。

為了避免數(shù)據(jù)泄漏,必須僅在訓(xùn)練集中進(jìn)行數(shù)據(jù)準(zhǔn)備。

如何在Python中為訓(xùn)練集-測試集分割和k折交叉驗(yàn)證實(shí)現(xiàn)數(shù)據(jù)準(zhǔn)備而又不會(huì)造成數(shù)據(jù)泄漏。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4848

    瀏覽量

    88998
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1229

    瀏覽量

    25926

原文標(biāo)題:準(zhǔn)備數(shù)據(jù)時(shí)如何避免數(shù)據(jù)泄漏

文章出處:【微信號(hào):DBDevs,微信公眾號(hào):數(shù)據(jù)分析與開發(fā)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    串口發(fā)送數(shù)據(jù)過程中,會(huì)中間停幾毫秒,為什么?

    串口發(fā)送數(shù)據(jù)過程中,會(huì)中間停幾毫秒,導(dǎo)致PLC觸發(fā)了MODBUS的T3.5,數(shù)據(jù)接收不對, 1、一開始用的是freemodbus,查看后發(fā)現(xiàn)是輪詢發(fā)送,后來改為不用freemodbus,直接發(fā)
    發(fā)表于 09-29 07:51

    CUBEIDE調(diào)試過程中,如何將數(shù)組仲的數(shù)據(jù)拷貝到電腦?

    請問,有什么辦法可以在CUBEIDE 調(diào)試過程中,將數(shù)組的數(shù)據(jù)拷貝到電腦上去?
    發(fā)表于 09-09 07:20

    服務(wù)器數(shù)據(jù)恢復(fù)—熱備盤上線過程中硬盤掉線導(dǎo)致數(shù)據(jù)丟失,數(shù)據(jù)恢復(fù)揭秘

    一臺(tái)某品牌存儲(chǔ)設(shè)備中有一組由8塊硬盤(包括熱備盤)組建的raid5磁盤陣列。上層安裝的Linux操作系統(tǒng)。 raid5磁盤陣列有一塊硬盤掉線,熱備盤自動(dòng)上線并開始同步數(shù)據(jù)。在熱備盤同步數(shù)據(jù)過程中,raid5陣列又有一塊硬盤由
    的頭像 發(fā)表于 08-26 13:24 ?119次閱讀

    如何保障遠(yuǎn)程運(yùn)維過程中數(shù)據(jù)安全和隱私?

    LZ-DZ100背面 在分布式光伏集群的遠(yuǎn)程運(yùn)維,數(shù)據(jù)安全和隱私保護(hù)面臨多重風(fēng)險(xiǎn),包括 傳輸過程中的竊聽 / 篡改、未授權(quán)訪問控制指令、設(shè)備固件被惡意植入、敏感數(shù)據(jù)(如站點(diǎn)位置、運(yùn)行
    的頭像 發(fā)表于 08-22 10:26 ?396次閱讀
    如何保障遠(yuǎn)程運(yùn)維<b class='flag-5'>過程中</b>的<b class='flag-5'>數(shù)據(jù)</b>安全和隱私?

    如何避免振弦式應(yīng)變計(jì)在安裝過程中的誤差?

    安裝過程中的關(guān)鍵控制點(diǎn),幫助用戶規(guī)避常見誤差風(fēng)險(xiǎn)。儀器檢查與預(yù)處理安裝前的準(zhǔn)備工作是避免誤差的第一步。首先需核對應(yīng)變計(jì)型號(hào)是否與設(shè)計(jì)要求一致,例如標(biāo)距(100mm
    的頭像 發(fā)表于 06-13 12:01 ?239次閱讀
    如何<b class='flag-5'>避免</b>振弦式應(yīng)變計(jì)在安裝<b class='flag-5'>過程中</b>的誤差?

    Jtti.cc如何確保海外服務(wù)器租用過程中數(shù)據(jù)安全?

    在租用海外服務(wù)器時(shí),確保數(shù)據(jù)安全需要綜合運(yùn)用技術(shù)措施、合規(guī)措施和管理措施。以下是具體建議: 1. 技術(shù)措施 數(shù)據(jù)加密 數(shù)據(jù)加密是保護(hù)數(shù)據(jù)隱私的關(guān)鍵手段。無論是
    的頭像 發(fā)表于 02-18 15:23 ?456次閱讀

    TLV5616數(shù)據(jù)轉(zhuǎn)換過程中當(dāng)數(shù)字量為奇數(shù)值時(shí)寫不進(jìn)去或著轉(zhuǎn)換不出模擬量,怎么解決?

    1、TLV5616存在數(shù)據(jù)間隔轉(zhuǎn)換 2、 數(shù)據(jù)轉(zhuǎn)換過程中當(dāng)數(shù)字量為奇數(shù)值時(shí)寫不進(jìn)去或著轉(zhuǎn)換不出模擬量的問題! 芯片工作外圍:5v (VCC)、Uref 2.56v(基準(zhǔn)電壓)
    發(fā)表于 02-14 08:12

    請問ldc1000在與主機(jī)進(jìn)行數(shù)據(jù)傳輸?shù)?b class='flag-5'>過程中,數(shù)據(jù)傳輸速率設(shè)置為多大合適?

    你好,請問ldc1000在與主機(jī)進(jìn)行數(shù)據(jù)傳輸?shù)?b class='flag-5'>過程中,數(shù)據(jù)傳輸速率設(shè)置為多大合適(我的差不多1M),但數(shù)據(jù)一直不對····
    發(fā)表于 01-17 06:37

    調(diào)試ADS1278,讀取數(shù)據(jù)過程中在下一次SYNC低脈沖信號(hào)前出現(xiàn)反復(fù)進(jìn)入中斷的現(xiàn)象,請問是否正確?

    準(zhǔn)備檢索變?yōu)榈?,我控制在DRDY下降沿進(jìn)入中斷讀取數(shù)據(jù)(僅讀取通道1),但是讀取數(shù)據(jù)過程中在下一次SYNC低脈沖信號(hào)前出現(xiàn)反復(fù)進(jìn)入中斷的現(xiàn)象,請問是否正確?在時(shí)序上還有什么問題嗎?
    發(fā)表于 12-25 07:03

    ADS1299在采集數(shù)據(jù)過程中,查看通道1采集到的數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)全是7FFFFFh或者800000h,怎么回事?

    ADS1299在采集數(shù)據(jù)過程中,查看通道1采集到的數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)全是7FFFFFh或者800000h的,不知道是怎么回事?
    發(fā)表于 12-19 06:51

    使用TSS721過程中,只能接收數(shù)據(jù)不能發(fā)送數(shù)據(jù)怎么解決?

    在使用TSS721過程中,只能接收數(shù)據(jù),不能發(fā)送數(shù)據(jù)。手冊寫會(huì)有自發(fā)自收的現(xiàn)象,這個(gè)現(xiàn)象該怎么樣解決呢?
    發(fā)表于 12-17 06:33

    ADS1299+RK3399在數(shù)據(jù)采樣的過程中,有數(shù)據(jù)丟失的情況怎么解決?

    我們在數(shù)據(jù)采樣的過程中,發(fā)現(xiàn)有數(shù)據(jù)丟失的情況,通過邏輯分析儀發(fā)現(xiàn),出現(xiàn)數(shù)據(jù)丟失時(shí),時(shí)序存在問題。具體見下圖: 從圖中可以看出,DRDY出現(xiàn)了異常,CS也是異常。有誰遇到過這種情況?
    發(fā)表于 12-16 06:58

    VSS在數(shù)據(jù)備份的作用 VSS技術(shù)的優(yōu)勢與劣勢

    一致性的影子副本,這意味著備份時(shí)應(yīng)用程序的狀態(tài)被“凍結(jié)”,從而避免了備份過程中數(shù)據(jù)損壞或不一致問題。 減少停機(jī)時(shí)間 :由
    的頭像 發(fā)表于 12-13 16:03 ?1423次閱讀

    PLC數(shù)據(jù)采集在實(shí)施過程中存在的問題及解決方案

    PLC數(shù)據(jù)采集在工業(yè)自動(dòng)化領(lǐng)域的實(shí)施過程中,遇到了一系列顯著的挑戰(zhàn)與痛點(diǎn),這些痛點(diǎn)直接影響了數(shù)據(jù)采集的效率、準(zhǔn)確性和成本效益。
    的頭像 發(fā)表于 11-30 14:38 ?1110次閱讀

    振弦式土壓力計(jì)的數(shù)據(jù)采集方法

    采集的注意事項(xiàng)   定期校準(zhǔn)土壓力計(jì)   為了確保測量數(shù)據(jù)的準(zhǔn)確性,需要定期對振弦式土壓力計(jì)進(jìn)行校準(zhǔn)。校準(zhǔn)可以采用標(biāo)準(zhǔn)壓力源進(jìn)行對比校準(zhǔn),也可以委托專業(yè)機(jī)構(gòu)進(jìn)行校準(zhǔn)。   避免干擾   在數(shù)據(jù)采集
    發(fā)表于 10-25 14:26