chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種新的機器學(xué)習(xí)模型可以準確地使呼叫盡早進行

倩倩 ? 來源:互聯(lián)網(wǎng)分析沙龍 ? 作者:互聯(lián)網(wǎng)分析沙龍 ? 2020-11-15 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新型冠狀病毒顯示出了一種針對腎臟的討厭的傾向,而且醫(yī)生不能總是說出哪些患者需要透析,直到他們這樣做。到那時,挽救生命通常為時已晚。

事實證明,一種新的機器學(xué)習(xí)模型可以準確地使呼叫盡早進行,以便進行預(yù)先計劃,準備和安排患者。

西奈山伊坎醫(yī)學(xué)院的Lili Chan博士及其同事在美國腎臟病學(xué)會虛擬全國會議上描述了他們開發(fā)和測試該算法的工作,該會議在周末結(jié)束。

該團隊使用來自3,000例住院且COVID陽性的患者的數(shù)據(jù)對模型進行了訓(xùn)練。研究人員僅納入了入院48小時后收集的信息,挑戰(zhàn)了AI來預(yù)測哪些急性腎損傷患者需要透析。

在測試階段,該模型提供了很高的精度(AUC為0.79)。結(jié)果表明,最有價值的入院前預(yù)測指標是肌酐和鉀的血藥濃度,年齡,心率和血氧飽和度的生命體征。

Chan在新聞稿中說:“使用入場特征的機器學(xué)習(xí)模型在預(yù)測透析需求方面具有良好的性能?!薄跋襁@樣的模型對于將來COVID-19激增期間的資源分配和計劃很有用。我們正在將該模型部署到我們的醫(yī)療系統(tǒng)中,以幫助臨床醫(yī)生更好地為患者提供護理?!?/p>

Chan及其同事在另一個最新研究項目中發(fā)現(xiàn),在紐約市住院的近4,000名COVID患者中,約46%患有急性腎損傷。其中,有19%需要透析,其中一半在醫(yī)院死亡。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3616

    瀏覽量

    51517
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8532

    瀏覽量

    135987
  • COVID-19
    +關(guān)注

    關(guān)注

    0

    文章

    226

    瀏覽量

    11198
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    超小型Neuton機器學(xué)習(xí)模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是家邊緣AI 公司,致力于讓機器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至
    發(fā)表于 07-31 11:38

    模型推理顯存和計算量估計方法研究

    (如全連接層、卷積層等)確定所需的顯存大??; (3)將各層顯存大小相加,得到模型總的顯存需求。 基于神經(jīng)網(wǎng)絡(luò)剪枝的顯存估計 神經(jīng)網(wǎng)絡(luò)剪枝是一種減少模型參數(shù)數(shù)量的技術(shù),可以降低顯存需求。
    發(fā)表于 07-03 19:43

    使用MATLAB進行無監(jiān)督學(xué)習(xí)

    無監(jiān)督學(xué)習(xí)一種根據(jù)未標注數(shù)據(jù)進行推斷的機器學(xué)習(xí)方法。無監(jiān)督學(xué)習(xí)旨在識別數(shù)據(jù)中隱藏的模式和關(guān)系,
    的頭像 發(fā)表于 05-16 14:48 ?1040次閱讀
    使用MATLAB<b class='flag-5'>進行</b>無監(jiān)督<b class='flag-5'>學(xué)習(xí)</b>

    機器學(xué)習(xí)模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?527次閱讀

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+Embedding技術(shù)解讀

    今天學(xué)習(xí)模型RAG 檢索增強生成技術(shù)Embedding,即嵌入,是一種將離散數(shù)據(jù)(如文字、圖像、音頻等)轉(zhuǎn)換為連續(xù)的密集向量表示的技術(shù)。這些向量能夠反映原始數(shù)據(jù)之間的關(guān)系,使得計算機能夠更好地處
    發(fā)表于 01-17 19:53

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+大模型微調(diào)技術(shù)解讀

    集對模型進行進一步訓(xùn)練的過程。 大模型微調(diào)是利用預(yù)訓(xùn)練模型的權(quán)重和特征,通過在新任務(wù)數(shù)據(jù)集上的訓(xùn)練,對模型
    發(fā)表于 01-14 16:51

    【「具身智能機器人系統(tǒng)」閱讀體驗】2.具身智能機器人大模型

    的局限性以及衡量大模型的關(guān)鍵指標。閱讀了該部分后,我感受到了一種前所未有的震撼,這種震撼不僅來源于技術(shù)本身的先進性,更來源于它對傳統(tǒng)機器人控制方式的顛覆。 傳統(tǒng)機器人的局限性與大
    發(fā)表于 12-29 23:04

    《具身智能機器人系統(tǒng)》第7-9章閱讀心得之具身智能機器人與大模型

    將自然語言理解與運動規(guī)劃融為體。這種端到端的方法使機器人能夠直接從人類指令生成動作序列,大幅簡化了控制流程。該項目的工作流程包含設(shè)計并封裝一個人機器人函數(shù)庫、編寫清晰地描述提示詞、在
    發(fā)表于 12-24 15:03

    AI模型部署邊緣設(shè)備的奇妙之旅:目標檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級目標檢測模型,具有非常高的檢測精度,可以在低算力設(shè)備進行實時的端到端
    發(fā)表于 12-19 14:33

    cmp在機器學(xué)習(xí)中的作用 如何使用cmp進行數(shù)據(jù)對比

    機器學(xué)習(xí)領(lǐng)域,"cmp"這個術(shù)語可能并不是個常見的術(shù)語,它可能是指"比較"(comparison)的縮寫。 比較在機器學(xué)習(xí)中的作用
    的頭像 發(fā)表于 12-17 09:35 ?1216次閱讀

    自然語言處理與機器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的個核心領(lǐng)域,它使計算機能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測或決策。自然語言處理與機器學(xué)習(xí)之間有著密切的關(guān)系
    的頭像 發(fā)表于 12-05 15:21 ?2371次閱讀

    如何提升ASR模型準確

    提升ASR(Automatic Speech Recognition,自動語音識別)模型準確性是語音識別技術(shù)領(lǐng)域的核心挑戰(zhàn)之。以下是些提升ASR
    的頭像 發(fā)表于 11-18 15:14 ?2763次閱讀

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1702次閱讀

    如何使用 PyTorch 進行強化學(xué)習(xí)

    強化學(xué)習(xí)(Reinforcement Learning, RL)是一種機器學(xué)習(xí)方法,它通過與環(huán)境的交互來學(xué)習(xí)如何做出決策,以最大化累積獎勵。
    的頭像 發(fā)表于 11-05 17:34 ?1307次閱讀

    麻省理工學(xué)院推出新型機器人訓(xùn)練模型

    近日,據(jù)TechCrunch報道,麻省理工學(xué)院的研究團隊展示了一種創(chuàng)新的機器人訓(xùn)練模型,該模型突破了傳統(tǒng)模仿學(xué)習(xí)方法的局限,不再依賴標準數(shù)據(jù)
    的頭像 發(fā)表于 11-04 14:56 ?1165次閱讀