chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

幾類常見的鋰電池體系正極材料的工作原理

鋰電聯(lián)盟會長 ? 來源:鋰電聯(lián)盟會長 ? 作者:鋰電聯(lián)盟會長 ? 2020-12-18 18:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

文章詳細闡述了這幾類常見的鋰電池體系正極材料的工作原理,對不同電池體系正極材料的優(yōu)勢以及存在的問題進行了分析和歸納,有助于對鋰電池正極材料有一個較為全面的了解。

在眾多的電池體系中,如圖1所示,最吸引人的當屬鋰電池,包括傳統(tǒng)的鋰離子電池、新型的鋰空氣電池和鋰硫電池。目前鋰電池中正極材料的實際容量普遍偏低,成為研究的重點和難點。對于目前常見的鋰電池正極材料的結構及工作原理的認識,有助于我們理解和把握鋰電池中的核心問題和鋰電池的發(fā)展動態(tài) 。

圖 1 不同類型電池的質量能量密度與體積能量密度分布圖 一、鋰離子電池正極材料

鋰離子電池是通過鋰離子在正極和負極材料之間來回嵌入和脫嵌,實現(xiàn)化學能和電能相互轉化的裝置,又被形象的描述為搖椅電池,最早由A.Armand在1980年提出來,其結構及充放電原理如圖2所示 。鋰離子電池正極候選材料按結構主要可分為以下三類:(1)層狀結構的LiMxO2(M=Co、Ni、Mn)正極材料;(2)尖晶石結構的LiMn2O4正極材料;(3)橄欖石結構的LiFePO4正極材料。

圖 2 鋰離子電池的基本結構 1 層狀LiMO2(M=Co、Ni、Mn)正極材料

層狀結構的LiMO2 (M=Co、Ni、Mn)正極材料是在層狀LiCoO2材料的基礎上發(fā)展起來的,通過用Ni、Mn金屬來取代部分Co實現(xiàn)的,其結構層狀LiCoO2類似。如圖3所示,Li則位于正八面體平板之間,呈現(xiàn)出層狀排列。因此充放電過程中,鋰離子可以從其所在的平面上發(fā)生二維的移動,鋰離子的嵌入和脫嵌速度較快。

圖 3LiMO2晶體結構球棍模型示意圖 電化學過程如式1所示 :


層狀結構的LiMO2(M=Co、Ni、Mn)中,不同的過渡金屬材料在合成和電化學性質上還是稍有區(qū)別,總結如下: (1)層狀LiCoO2結構中,鋰離子的可逆嵌入脫嵌量只有0.5個單元,多于0.5時,材料會發(fā)生不可逆的相變,造成容量衰減。所以LiCoO2的耐過充能力差,Li1-xCoO2中x的范圍為0≤x≤0.5,理論容量只有156mAh/g。此外,處于充電狀態(tài)的Li1-xCoO2 (x>0)在高溫下容易發(fā)生如式2所示的析氧反應,放出氧氣。


(2)層狀LiNiO2的理論容量有275mAh/g,實際容量在190-200mAh/g。但由于鎳離子的離子半徑小于鋰離子,在充放電過程中鎳離子容易占據(jù)鋰離子的位置,出現(xiàn)陽離子錯排的現(xiàn)象,導致LiNiO2局部層間結構坍塌,造成材料的容量降低。此外LiNiO2材料還存在熱穩(wěn)定性差、放熱量大、耐過充能力差等多種問題 。 (3)層狀LiMnO2與層狀的LiCoO2結構略有不同,氧原子是以扭變的四方密堆方式排布,呈層狀巖鹽結構。理論容量為285mAh/g,但其循環(huán)性能較差。材料在脫鋰后結構不穩(wěn)定,會慢慢向尖晶石型LiMn2O4結構轉變,此時鋰離子會進入錳離子層,造成容量衰減 。此外錳離子還容易與電解液發(fā)生副反應,進而溶解在電解液里。高溫時材料還 易發(fā)生如式3的反應,產(chǎn)生雜相。


(4)LiNi1-x-yCoxMnyO2三元正極材料。在三元材料中最為典型的要屬鎳鉆錳比例為 1:1:1的化合物,其理論容量為277mAh/g。三元材料可通過調控Ni、Co、Mn的比例來調節(jié)材料的性能,但材料的穩(wěn)定性和安全性問題還是存在,并且多種元素混合還帶來了合成工藝的困難 。 2 尖晶石結構LiMn2O4正極材料

早在1983年M.Thackeray和 J.Goodenough等人發(fā)現(xiàn)了錳尖晶石可作為鋰離子電池正極材料,理論容量為148mAh/g。尖晶石LiMn2O4結構中氧以立方密堆方式排列組成其晶胞骨架,其中Li+占據(jù)1/8的氧四面體8a位置,Mn原子占據(jù)1/2氧八面體16d位置。結構中錳有兩種價態(tài),分別為Mn3+和Mn4+,各占50%,材料結構如圖4所示。

圖 4 LiMn2O4晶體結構示意圖

LiMn2O4結構中,空的氧四面體和氧八面體以共面、共邊方式連接,這些空位構成了三維的鋰離子擴散通道,因而材料的導鋰性很好。其電極反應如式4所示。當發(fā)生鋰離子嵌入和脫嵌時,結構中錳原子能穩(wěn)定立方密堆的氧,支撐起整個結構,所以尖晶石 LiMn2O4材料結構相對穩(wěn)定。


尖晶石LiMn2O4材料的最主要問題是其容量衰減過快,造成其容量衰減的原因主要有 :

(1)LiMn2O4在深度放電或者大功率充放電時,會轉化為四方相的Li2Mn2O4,材料中Mn被還原為三價。這種價態(tài)變化會導致Jahn-Teller效應引起材料的變形,引起晶胞體積增加6.5%,破壞材料晶體結構,引起容量衰減。 (2) 在反應過程中,Mn3+會發(fā)生歧化生成Mn4+和Mn2+, 二價錳離子會溶解到電解液中,造成活性物質流失。 3 橄欖石結構LiFePO4正極材料1997年JohnB.Goodenough報道橄欖石結構的磷酸鐵鋰也可作為鋰離子電池正極材料,LiFePO4的理論容量為170mAh/g。橄欖石結構的LiFePO4屬于正交晶系,其結構如圖5所示。

圖 5 LiFePO4晶體結構示意圖

氧原子以輕微扭曲的六方密堆方式構成晶胞的基本骨架,F(xiàn)eO6八面體靠頂點共用氧原子相連。LiO6八面體則靠共邊相連形成鏈狀,每個PO4四面體分別與一個FeO6八面體 和兩個LiO6八面體共邊。所有的氧離子都與五價的磷原子通過共價鍵結合,由于P-O鍵作用力強,P起到了穩(wěn)定整個骨架的作用,材料的熱穩(wěn)定性非常好,耐過充能力強。其電極反應如式5所示。

7acb52aa-353b-11eb-a64d-12bb97331649.png


但在實際應用中,LiFePO4材料的容量和倍率性要比理論值低許多,這主要是因為材料的導電性和導鋰性不佳。計算結果表明在橄欖石型LiFePO4結構中,鋰離子從 a、b軸方向的的擴散勢壘過高 ,從而只能沿擴散勢壘較低的c軸方向擴散。因而LiFePO4材料中,鋰離子的擴散通道是一維的,鋰離子只能沿c軸方向 (對應于晶體的[010] 方向)擴散。

除此之外,由于FeO6八面體之間只是通過共頂點連接,并沒有共邊,所以沒有形成連續(xù)的網(wǎng)狀結構,導致材料的電子導電率較低 。 二、新一代高容量鋰電池正極材料當下鋰電池的研究熱主要是圍繞鋰空氣電池和鋰硫電池展開的,二者被認為是最具發(fā)展?jié)摿Φ男乱淮囯姵?。它們與以往鋰離子電池正極材料在結構和反應機理上有很大區(qū)別。 1 鋰空氣電池鋰空氣電池是金屬空氣電池的一種,由于使用分子量最低的鋰金屬作為活性物質,其理論比能量非常高。不計算氧氣質量的話,為11140Wh/kg,實際上可利用的能量密度也可達1700Wh/kg, 遠高于其他電池體系。鋰空氣電池的基本結構和工作機理如圖6所示。

7af43a8a-353b-11eb-a64d-12bb97331649.jpg

圖 6 鋰空氣電池結構示意圖

鋰空氣電池按使用的電解液的狀態(tài)不同,主要可分為水體系、有機體系、水-有機混合體系以及全固態(tài)鋰空氣電池。在有機體系鋰空氣電池工作時,原料O2通過多孔空氣電極進入電池內(nèi)部,在電極表面被催化成O2-或O22-,接著與電解質中的Li+結合,生成過氧化鋰或氧化鋰,產(chǎn)物沉積在空氣電極表面。當空氣電極中的所有空氣孔道都被產(chǎn)物堵塞后電池放電終止。其電極反應如下所示:

7b1c08a8-353b-11eb-a64d-12bb97331649.jpg

鋰空氣電池有著不可比擬的超高能量密度、環(huán)境友好以及價格低廉優(yōu)勢,但其研究尚屬初級階段,存在非常多棘手的問題,主要有 :

(1)正極反應需要催化劑。放電過程中,在沒有催化劑存在的情況下,氧氣還原非常慢;充電過程中,電壓平臺為4V左右,容易造成電解液的分解等副反應 。需要使用適當?shù)拇呋瘎﹣韼椭姵胤磻?

(2)鋰空氣電池是敞開體系 ,會引發(fā)諸如電解液揮發(fā)、電解液氧化、空氣中的水分和CO2與金屬鋰反應等一系列致命問題。

(3)空氣電極孔道堵塞問題 。放電生成不溶于電解液的過氧化鋰或氧化鋰會堆積在空氣電極中,阻塞空氣孔道,導致空氣電極失活、放電終止。 綜上所述 ,鋰空氣電池存在很多問題亟待解決:包括氧氣還原反應的催化 、空氣電極透氧疏水性、空氣電極失活等。雖然鋰空氣電池取得了一些進步,但要真正應用還有很長一段路要走。

2 鋰硫電池鋰硫電池最早起源于上世紀70年代,但是一直以來鋰硫電池的實際容量不高、衰減嚴重,并未受到重視。Linda F.Nazar題組報道了硫碳復合物作為鋰硫電池正極材料獲得較好的循環(huán)性和非常高的放電容量,掀起了鋰硫電池研究的熱潮。鋰硫電池主要使用單質硫或硫基化合物為電池正極材料,負極主要使用金屬鋰,其電池結構如圖7所示 。

圖 7 鋰硫電池結構示意圖

其中以正極材料為單質硫 (主要以S8環(huán)形態(tài)存在)計算,其理論比容量為1675mAh/g,理論放電電壓為2.287V,理論能量密度為2600Wh/kg。充放電時,電極反應如下所示:

7b7661ea-353b-11eb-a64d-12bb97331649.jpg

鋰硫電池中,正極材料的反應是一個多電子、多步驟的逐級反應,如圖8所示。以硫放電過程為例,簡單可以分為兩個階段,首先固態(tài)單質硫S8與Li+生成液態(tài)的Li2S8,隨著放電程度的深入會經(jīng)過可溶性Li2S6最終生成可溶性Li2S4,對應電壓平臺2.4V-2.1V,此過程由于有液態(tài)物質的生成,反應速度較快。

7b9fc5a8-353b-11eb-a64d-12bb97331649.jpg

圖 8 鋰硫電池典型放電曲線示意圖 接著隨著進一步的放電,在2.1V電壓平臺處,可溶性Li2S4轉化成不溶性的固相Li2S2,最后再進一步生成終產(chǎn)物固相的Li2S,由于這一階段中固體開始生成,使得離子擴散變慢,所以反應速度較緩。不同于傳統(tǒng)的鋰離子電池材料,鋰硫電池充放電時單質硫和硫化鋰中間經(jīng)過多硫化鋰Li2Sx(x=2-8)而并不是通過鋰離子在正極材料和負極材料之間的往返嵌入和脫嵌來實現(xiàn)充放電的,因此鋰硫電池性能受正極材料的鋰離子脫嵌能力影響小。

鋰硫電池的優(yōu)勢非常明顯:具有非常高的理論容量;材料中沒有氧,不會發(fā)生析氧反應,因而安全性能好;硫資源豐富且單質硫價格極其低廉:對環(huán)境友好,毒性小。但鋰硫電池真正應用還面臨著一些問題,主要包括 : (1)導電性和導鋰性差:單質硫中硫分子是以8個S相連組成冠狀的S8,屬于典型的電子、離子絕緣體,其室溫下電導率僅為5×10-30 S/m。而且產(chǎn)物Li2S2和Li2S也都是電子絕緣體。因而活性物質的利用率不高、倍率性能不佳。目前主要通過制備小尺寸的硫碳復合材料來解決鋰硫電池正極材料的導電性和導鋰性問題。

(2)多硫化鋰穿梭效應:在鋰硫電池充放電過程中,長鏈多硫化鋰Li2Sx(4

7bdae19c-353b-11eb-a64d-12bb97331649.jpg

圖 9 多硫化鋰的穿梭效應示意圖 (3)體積膨脹問題:硫在完全充電轉化為硫化鋰時,體積膨脹達76%,容易引起正極材料的結構被破壞,影響活性物質的穩(wěn)定性,造成容量衰減。 (4)金屬鋰負極:由于硫本身不含鋰原子,所以必須使用金屬鋰單質作為負極材料,但這樣一來就不可避免會產(chǎn)生鋰金屬的枝晶問題,帶來安全隱患。

盡管鋰硫電池還存在著一些問題,近些年隨著對鋰硫電池研究的深入,通過減小硫顆粒尺寸、對硫材料進行包覆、制備硫碳復合材料、對多硫化鋰吸附、改進電解液等多種措施,在提高硫材料的容量和循環(huán)性方面取得了重要進展。

參考:《鋰電池正極材料工作原理》

責任編輯:xj

原文標題:鋰離子電池正極材料體系基礎,這篇文章看完就全明白了!

文章出處:【微信公眾號:鋰電聯(lián)盟會長】歡迎添加關注!文章轉載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰離子電池
    +關注

    關注

    85

    文章

    3519

    瀏覽量

    79871
  • 正極材料
    +關注

    關注

    4

    文章

    328

    瀏覽量

    20116

原文標題:鋰離子電池正極材料體系基礎,這篇文章看完就全明白了!

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯(lián)盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    干法 vs 濕法工藝:全固態(tài)鋰電池復合正極中粘結劑分布與電荷傳輸機制

    研究背景全固態(tài)鋰電池因其高能量密度和安全性成為電動汽車電池的有力候選者。然而,聚合物粘結劑作為離子絕緣體,可能對復合正極中的電荷傳輸產(chǎn)生不利影響,從而影響電池的倍率性能。本研究旨在探討
    的頭像 發(fā)表于 08-11 14:54 ?804次閱讀
    干法 vs 濕法工藝:全固態(tài)<b class='flag-5'>鋰電池</b>復合<b class='flag-5'>正極</b>中粘結劑分布與電荷傳輸機制

    鋰離子電池正極材料之一:三元高鎳化的研究現(xiàn)狀

    在新能源汽車蓬勃發(fā)展的當下,鋰電池作為其核心動力源,其性能的優(yōu)劣直接關系到車輛的續(xù)航里程、使用壽命等關鍵指標。而鋰電池正極材料,更是決定電池
    的頭像 發(fā)表于 08-05 17:52 ?545次閱讀
    鋰離子<b class='flag-5'>電池</b><b class='flag-5'>正極</b><b class='flag-5'>材料</b>之一:三元高鎳化的研究現(xiàn)狀

    18650 鋰電池多少毫安?如何選擇合適容量的 18650 鋰電池

    18650 鋰電池的容量是一個受多種因素影響的參數(shù),從材料體系到生產(chǎn)工藝,再到使用環(huán)境,都會對其容量產(chǎn)生作用。了解這些知識,有助于我們在選擇和使用 18650 鋰電池時,做出更合適的決
    的頭像 發(fā)表于 01-20 16:05 ?5097次閱讀
    18650 <b class='flag-5'>鋰電池</b>多少毫安?如何選擇合適容量的 18650 <b class='flag-5'>鋰電池</b>

    鋰電池充電器和鉛酸電池充電器怎么區(qū)分?有和不同?

    鋰電池充電器和鉛酸電池充電器怎么區(qū)分?有和不同?說起鉛酸電池充電器,我們首先想到的應用就是電動自行車。其實,根據(jù)其結構與用途,業(yè)內(nèi)將鉛酸電池分為四大類:1、啟動用,2、動力用,3、固定
    發(fā)表于 01-15 10:06

    鉛酸電池鋰電池的區(qū)別,鋰電池和鉛酸電池哪個好,鋰電池和鉛酸電池哪個安全

    文章先總體指出鋰電池和鉛酸電池常見電池類型且有明顯區(qū)別。接著從材料構成、能量密度、循環(huán)壽命、充電速度、安全性、體積重量、使用壽命、成本價
    的頭像 發(fā)表于 12-12 16:34 ?5006次閱讀
    鉛酸<b class='flag-5'>電池</b>與<b class='flag-5'>鋰電池</b>的區(qū)別,<b class='flag-5'>鋰電池</b>和鉛酸<b class='flag-5'>電池</b>哪個好,<b class='flag-5'>鋰電池</b>和鉛酸<b class='flag-5'>電池</b>哪個安全

    退役電動汽車鋰電池正極材料的直接再生策略—去除殘留污染物的關鍵作用

    ,并恢復了其電化學性能,使其與新正極材料相媲美。這項工作不僅為廢舊鋰電池的環(huán)保和經(jīng)濟型回收提供了新思路,也為鋰電池回收行業(yè)的可持續(xù)發(fā)展做出了
    的頭像 發(fā)表于 11-21 10:49 ?1145次閱讀
    退役電動汽車<b class='flag-5'>鋰電池</b><b class='flag-5'>正極</b><b class='flag-5'>材料</b>的直接再生策略—去除殘留污染物的關鍵作用

    如何設計鋰電池相關電路避免鋰電池邊充邊放?

    最近在做一個項目,需要用到鋰電池來為整個系統(tǒng)供電,鋰電池通過Buck電路和Boost電路給后續(xù)負載供電,同時使用太陽能電池板和CN3791、DW01來給鋰電池充電。 我在設計電路的時候
    發(fā)表于 11-15 10:59

    三元鋰電池的市場前景分析

    正極材料的配比,實現(xiàn)了能量密度的顯著提升。高鎳三元材料因其更高的能量密度而成為研究的熱點。 安全性改善 :通過改進電解液、隔膜材料電池結構
    的頭像 發(fā)表于 10-31 10:31 ?1830次閱讀

    三元鋰電池行業(yè)發(fā)展趨勢

    三元鋰電池,即三元正極材料鋰電池,因其正極材料由鎳、鈷、錳(或鋁)三種元素組成而得名。這種
    的頭像 發(fā)表于 10-31 10:28 ?1817次閱讀

    三元鋰電池在電動車的應用

    動力電池的主流選擇。 三元鋰電池概述 三元鋰電池,全稱為三元正極材料鋰離子電池,其
    的頭像 發(fā)表于 10-31 09:47 ?2244次閱讀

    三元鋰電池與磷酸鐵鋰對比

    。 三元鋰電池(NMC/NCA) 1. 化學組成 三元鋰電池主要指的是鎳錳鈷(NMC)或鎳鈷鋁(NCA)電池。這些電池正極
    的頭像 發(fā)表于 10-31 09:40 ?2659次閱讀

    三元鋰電池使用壽命分析

    三種元素組成,其正極材料為鎳鈷錳酸鋰(NMC)。這種電池具有以下特點: 高能量密度 :三元鋰電池的能量密度高于傳統(tǒng)的磷酸鐵鋰電池,能夠提供更
    的頭像 發(fā)表于 10-31 09:39 ?2913次閱讀

    鋰電池保護芯片的工作原理

    作為電池重要部件之一,鋰電池保護電路是鋰電池安全的關鍵組成部分,它主要用于監(jiān)測和控制電池的充放電過程,以確保電池的安全性和性能穩(wěn)定性。
    的頭像 發(fā)表于 10-21 09:36 ?2880次閱讀
    <b class='flag-5'>鋰電池</b>保護芯片的<b class='flag-5'>工作原理</b>

    鋰電池出口——海關監(jiān)管要點總結

    雜項危險貨物(雜項危險物質和物品,包括危害環(huán)境物質)。鋰電池根據(jù)工作原理和運輸方式分為3大類5個UN編號:單獨運輸?shù)?b class='flag-5'>鋰電池:可分為鋰金屬電池和鋰離子
    的頭像 發(fā)表于 10-18 14:59 ?1456次閱讀
    <b class='flag-5'>鋰電池</b>出口——海關監(jiān)管要點總結

    鋰電池保護器的工作原理和作用

    鋰電池保護器,也被稱為保護電路板(PCB),是一種內(nèi)嵌于鋰電池組中的電器元件。它主要由保護IC(集成電路)、MOS管(金屬氧化物半導體場效應晶體管)、電感、電阻、電容以及溫度傳感器等組件構成。這些組件協(xié)同工作,為
    的頭像 發(fā)表于 10-17 17:29 ?3281次閱讀