chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)圖像識別_卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢

姚小熊27 ? 來源:創(chuàng)云科技.CSDN ? 作者:創(chuàng)云科技.CSDN ? 2021-05-13 14:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)圖像識別

機(jī)器視覺的概念中,圖像識別是指軟件具有分辨圖片中的人物、位置、物體、動(dòng)作以及筆跡的能力。計(jì)算機(jī)可以應(yīng)用機(jī)器視覺技巧,結(jié)合人工智能以及攝像機(jī)來進(jìn)行圖像識別。

根據(jù)神經(jīng)網(wǎng)絡(luò)的構(gòu)建方式,一個(gè)相對簡單的改變就可以讓較大的圖像變得更好處理。改變的結(jié)果就是我們所見到的卷積神經(jīng)網(wǎng)絡(luò)(CNNs,ConvNets)。

神經(jīng)網(wǎng)絡(luò)的廣適性是他們的優(yōu)點(diǎn)之一,但是在處理圖像時(shí),這個(gè)優(yōu)點(diǎn)就變成了負(fù)擔(dān)。卷積神經(jīng)網(wǎng)絡(luò)對此專門進(jìn)行了折衷:如果一個(gè)網(wǎng)絡(luò)專為處理圖像而設(shè)計(jì),有些廣適性需要為更可行的解決方案做出讓步。

對于任意圖像,像素之間的距離與其相似性有很強(qiáng)的關(guān)系,而卷積神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)正是利用了這一特點(diǎn)。這意味著,對于給定圖像,兩個(gè)距離較近的像素相比于距離較遠(yuǎn)的像素更為相似。然而,在普通的神經(jīng)網(wǎng)絡(luò)中,每個(gè)像素都和一個(gè)神經(jīng)元相連。在這種情況下,附加的計(jì)算負(fù)荷使得網(wǎng)絡(luò)不夠精確。

卷積神經(jīng)網(wǎng)絡(luò)通過消除大量類似的不重要的連接解決了這個(gè)問題。技術(shù)上來講,卷積神經(jīng)網(wǎng)絡(luò)通過對神經(jīng)元之間的連接根據(jù)相似性進(jìn)行過濾,使圖像處理在計(jì)算層面可控。對于給定層,卷積神經(jīng)網(wǎng)絡(luò)不是把每個(gè)輸入與每個(gè)神經(jīng)元相連,而是專門限制了連接,這樣任意神經(jīng)元只能接受來自前一層的一小部分的輸入(例如3*3或5*5)。因此,每個(gè)神經(jīng)元只需要負(fù)責(zé)處理一張圖像的一個(gè)特定部分。(順便提一下,這基本就是人腦的獨(dú)立皮質(zhì)神經(jīng)元工作的方式。每個(gè)神經(jīng)元只對完整視野的一小部分進(jìn)行響應(yīng))。

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢

卷積神經(jīng)網(wǎng)絡(luò)是在Hub等人對貓的視覺皮層中細(xì)胞的研究基礎(chǔ)上,通過擬生物大腦皮層構(gòu)而特殊設(shè)計(jì)的含有多隱層的人工神經(jīng)網(wǎng)絡(luò)。卷積層、池化層、激活函數(shù)是卷積神經(jīng)網(wǎng)路的要組部分。卷積神經(jīng)網(wǎng)絡(luò)通過局部感受野、權(quán)重共享和降采樣3種策略,降低了網(wǎng)絡(luò)模型的復(fù)雜度,同時(shí)對于平移、旋轉(zhuǎn)、尺度縮放等形式的變有度的不變性。因此被廣泛應(yīng)用于圖像分類、目標(biāo)識別、語音識別等領(lǐng)域一般情況下,常見的卷積神經(jīng)網(wǎng)絡(luò)由輸入層、卷積層、激活層、池化層、全連接層和最后的輸出層構(gòu)成。

卷積神經(jīng)網(wǎng)絡(luò)采用原始圖像作為輸入, 可以有效的從大量樣本中學(xué)習(xí)到相應(yīng)地特征, 避免了復(fù)雜的特征提取過程。由于卷積神經(jīng)網(wǎng)絡(luò)(CNN) 可以直接對二維圖像進(jìn)行處理, 因此, 在圖像處理方面得到了廣泛的應(yīng)用, 并取得了較多的研究成果。該網(wǎng)絡(luò)通過簡單的非線性模型從原始圖像中提取出更加抽象的特征,并且在整個(gè)過程中只需少量的人工參與。

卷積神經(jīng)網(wǎng)絡(luò)具有局部感知和參數(shù)共享兩個(gè)特點(diǎn),局部感知即卷積神經(jīng)網(wǎng)絡(luò)提出每個(gè)神經(jīng)元不需要感知圖像中的全部像素,只對圖像的局部像素進(jìn)行感知,然后在更高層將這些局部的信息進(jìn)行合并,從而得到圖像的全部表征信息。不同層的神經(jīng)單元采用局部連接的方式,即每一層的神經(jīng)單元只與前一層部分神經(jīng)單元相連。每個(gè)神經(jīng)單元只響應(yīng)感受野內(nèi)的區(qū)域,完全不關(guān)心感受野之外的區(qū)域。這樣的局部連接模式保證了學(xué)習(xí)到的卷積核對輸入的空間局部模式具有最強(qiáng)的響應(yīng)。權(quán)值共享網(wǎng)絡(luò)結(jié)構(gòu)使之更類似于生物神經(jīng)網(wǎng)絡(luò),降低了網(wǎng)絡(luò)模型的復(fù)雜度,減少了權(quán)值的數(shù)量。這種網(wǎng)絡(luò)結(jié)構(gòu)對平移、比例縮放、傾斜或者共他形式的變形具有高度不變性。而且卷積神經(jīng)網(wǎng)絡(luò)采用原始圖像作為輸入,可以有效的從大量樣本中學(xué)習(xí)到相應(yīng)地特征,避免了復(fù)雜的特征提取過程。

責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    背景 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個(gè)方面:局部連接、權(quán)值共享、多卷積核以及池化。這些技術(shù)共同作用,使得CNN在
    的頭像 發(fā)表于 04-07 09:15 ?520次閱讀
    自動(dòng)駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1037次閱讀

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)圖像識別中應(yīng)
    的頭像 發(fā)表于 02-12 15:12 ?981次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1777次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?928次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1638次閱讀

    使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像分類是一個(gè)涉及多個(gè)步驟的過程。 1. 問題定義 確定目標(biāo) :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及
    的頭像 發(fā)表于 11-15 15:01 ?1137次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?1055次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?2247次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理
    的頭像 發(fā)表于 11-15 14:52 ?1070次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義
    的頭像 發(fā)表于 11-15 14:47 ?2188次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1794次閱讀

    基于差分卷積神經(jīng)網(wǎng)絡(luò)的低照度車牌圖像增強(qiáng)網(wǎng)絡(luò)

    車牌識別作為現(xiàn)代化智能交通系統(tǒng)中重要的環(huán)節(jié),對提升路網(wǎng)效率以及緩解城市交通壓力等問題具有重要的社會(huì)意義,然而弱光照車牌圖像識別仍然具有重大的挑戰(zhàn)。構(gòu)建了一個(gè)基于差分卷積神經(jīng)網(wǎng)絡(luò)的弱光照
    的頭像 發(fā)表于 11-11 10:29 ?1035次閱讀
    基于差分<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的低照度車牌<b class='flag-5'>圖像</b>增強(qiáng)<b class='flag-5'>網(wǎng)絡(luò)</b>

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    這個(gè)小型網(wǎng)絡(luò),用于描述網(wǎng)絡(luò)的方程中也具有32個(gè)偏置和32個(gè)權(quán)重。 CIFAR神經(jīng)網(wǎng)絡(luò)是一種廣泛用于圖像識別的CNN。它主要由兩種類型的層組成:卷積
    發(fā)表于 10-24 13:56