chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么大多數(shù)流行的目標(biāo)檢測模型不擅長檢測小目標(biāo)?

機(jī)器視覺自動化 ? 來源:AI公園 ? 作者:AI公園 ? 2021-06-09 17:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

對小目標(biāo)檢測進(jìn)行了分析,并結(jié)合已有的方法給出了一些思路。

機(jī)器學(xué)習(xí)正越來越多地進(jìn)入我們的日常生活。從個人服務(wù)的廣告和電影推薦,到自動駕駛汽車和自動送餐服務(wù)。幾乎所有的現(xiàn)代自動化機(jī)器都能“看”世界,但跟我們不一樣。為了像我們?nèi)祟愐粯涌吹胶妥R別每個物體,它們必須特別地進(jìn)行檢測和分類。雖然所有現(xiàn)代檢測模型都非常擅長檢測相對較大的物體,比如人、汽車和樹木,但另一方面,小物體仍然給它們帶來一些麻煩。對于一個模型來說,很難在房間的另一邊看到手機(jī),或者在100米之外看到紅綠燈。所以今天我們要講的是為什么大多數(shù)流行的目標(biāo)檢測模型不擅長檢測小目標(biāo),我們?nèi)绾翁岣咚鼈兊男阅?,以及其他已知的解決這個問題的方法。

原因

所有現(xiàn)代目標(biāo)檢測算法都是基于卷積神經(jīng)網(wǎng)絡(luò)的。這是一種非常強(qiáng)大的方法,因為它能夠創(chuàng)造一些低級的圖像抽象,如線,圓圈,然后將它們“迭代地組合”成我們想要檢測的目標(biāo),但這也是它們難以檢測小目標(biāo)的原因。

上面你可以看到一個通用的圖像分類神經(jīng)網(wǎng)絡(luò)的插圖。我們最感興趣的是隱藏層部分。如你所見,這個網(wǎng)絡(luò)有許多卷積的組合,然后是一個池化層。許多目標(biāo)檢測網(wǎng)絡(luò),如YOLO, SSD-Inception和Faster R-CNN也使用這些,而且使用得相當(dāng)多。將圖像的分辨率從600×600降低到約30×30。由于這個事實,他們在第一層提取的小目標(biāo)特征(一開始就很少)在網(wǎng)絡(luò)中間的某個地方“消失”了,從來沒有真正到達(dá)檢測和分類步驟中。我們可以嘗試一些方法來幫助模型更好地查看這些目標(biāo),但是在改進(jìn)性能之前,讓我們先看看它現(xiàn)在的狀態(tài)。

目前流行的目標(biāo)檢測器的性能

論文SOD-MTGAN在COCO數(shù)據(jù)集上進(jìn)行實驗并收集了2016年的測試結(jié)果。+++表示F-RCNN的特殊訓(xùn)練過程。

一些很小改動去提升小目標(biāo)檢測的方法

使用Focal loss

如果你有很多類要檢測,一個最簡單的方法來提高對小物體和難以檢測的類的檢測是在訓(xùn)練神經(jīng)網(wǎng)絡(luò)的過程中使用Focal loss。這里的主要直覺是,這種損失對網(wǎng)絡(luò)的“懲罰”不是對它已經(jīng)可以很好地檢測到的類別進(jìn)行錯誤分類,而是對它現(xiàn)在有問題的類別進(jìn)行更多分類。因此,為了進(jìn)一步最小化損失函數(shù),權(quán)值將開始以這樣一種方式改變,使網(wǎng)絡(luò)更好地挑選困難的類別。這很容易從主要論文提供的圖中看到:

將圖像分成小塊

我們自己也遇到過模型不能檢測到相對較小的物體的問題。任務(wù)是檢測足球運動員和比賽場上的足球。游戲的分辨率是2K,所以我們有很多細(xì)節(jié)。但我們用來檢測玩家的模型的輸入分辨率要小得多——從300×300到604×604。所以,當(dāng)我們把圖像輸入網(wǎng)絡(luò)時,很多細(xì)節(jié)都丟失了。它仍然能夠找到前景中的球員,但既沒有球也沒有球員在球場的另一邊被檢測到。因為我們有一個大的輸入圖像,我們決定先嘗試我們能想到的最簡單的解決方案 —— 把圖像分割成小塊,然后對它們運行檢測算法。而且效果很好。你可以在下面看到運行測試的結(jié)果。

雖然該模型的FPS大幅下降,但它給了該模型在玩家檢測上一個非常好的準(zhǔn)確性提升。另一方面,球仍然是個問題。稍后我們將更深入地探討我們是如何解決它的。

利用圖像的時間特性

如果我們有一個來自靜止攝像機(jī)的視頻,我們需要檢測它上面的移動物體,比如足球,我們可以利用圖像的時間特性。例如,我們可以做背景減法,或者僅僅使用后續(xù)幀之間的差異作為一個(或多個)輸入通道。所以,我們可能有3個RGB通道和一個或多個額外的通道。這確實讓我們改變了一些網(wǎng)絡(luò)的輸入,但仍然不是很多。我們所需要改變的只是第一個輸入層,而網(wǎng)絡(luò)的其他部分可以保持不變,仍然可以利用整個架構(gòu)的力量。

這一變化將預(yù)示著網(wǎng)絡(luò)將為移動目標(biāo)創(chuàng)造更“強(qiáng)大”的特性,而這些特性不會消失在池化和大stride的卷積層中。

改變anchor大小

目前的一些探測器使用所謂的“錨”來探測物體。這里的主要直覺是通過明確地向網(wǎng)絡(luò)提供一些關(guān)于物體大小的信息來幫助網(wǎng)絡(luò)檢測物體,并在圖像中每個預(yù)定義的單元格中檢測幾個物體。

因此,改變錨點以適應(yīng)你的數(shù)據(jù)集是一個很好的主意。對于YOLOv3,有一種簡單的方法可以做到這一點。這里:https://github.com/AlexeyAB/darknet#how-to-improve-object-detection你將發(fā)現(xiàn)一系列改進(jìn)YOLO體系結(jié)構(gòu)檢測的方法。

為小目標(biāo)檢測定制模型

上面描述的方法很好,但遠(yuǎn)不是最好的,如果你使用專為尋找小目標(biāo)而設(shè)計的體系結(jié)構(gòu),你很可能會獲得更好的結(jié)果。所以,讓我們開始吧。

特征金字塔網(wǎng)絡(luò) (FPN)

由于其有趣的結(jié)構(gòu),這些類型的網(wǎng)絡(luò)在檢測小目標(biāo)方面表現(xiàn)得相當(dāng)有效。雖然像SSD和YOLOv3這樣的網(wǎng)絡(luò)也檢測不同尺度的目標(biāo),但是只使用了這些尺度的信息,即所謂的金字塔特征層,而FPN建議將高層特征向下傳播。這一方法“豐富”了抽象的底層,并具有更強(qiáng)的語義特征,這些特征是網(wǎng)絡(luò)在其頭部附近計算出來的,最終幫助探測器拾取小物體。這種簡單而有效的方法表明,可以將目標(biāo)檢測數(shù)據(jù)集的總體平均精度從47.3提高到56.9。

Finding Tiny Faces

這篇做了大量的工作和研究。我強(qiáng)烈建議你閱讀全文:https://arxiv.org/pdf/1612.04402.pdf,但我們在這里總結(jié)一下:

上下文很重要,利用它更好地找到小物體

建立多個不同尺度的網(wǎng)絡(luò)成本高,但效果好

如果你想要高精度,區(qū)域建議仍然是一個好方法

查看你的骨干網(wǎng)絡(luò)做預(yù)訓(xùn)練的數(shù)據(jù)集,然后嘗試縮放你的圖像,使你需要檢測/分類的目標(biāo)的大小匹配那些預(yù)訓(xùn)練的數(shù)據(jù)集。這將減少訓(xùn)練時間和并得到更好的結(jié)果。檢測大小為20×45的目標(biāo),使用同樣大小的kernel可能并不一定是最有效的。將圖像放大兩倍并使用40×90的kernel,就可能真正提高性能。大物體的情況則相反。

F-RCNN的改進(jìn)

因為在幾乎所有你看到的關(guān)于網(wǎng)絡(luò)之間的速度/準(zhǔn)確性比較的圖表中,F(xiàn)-RCNN總是在右上角,人們一直在努力提高這種體系結(jié)構(gòu)的速度和準(zhǔn)確性。我們將簡要看一下不同的改進(jìn)方法,以提高其準(zhǔn)確性。

Small Object Detection in Optical Remote Sensing Images via Modified Faster RCNN

在本文中,作者做了幾件事。首先,他們測試了不同的預(yù)訓(xùn)練骨干網(wǎng)絡(luò)用于F-RCNN的小目標(biāo)檢測。結(jié)果表明,ResNet-50的效果最好。他們已經(jīng)選擇了最適合他們測試網(wǎng)絡(luò)的數(shù)據(jù)集的最佳錨尺寸。此外,就像之前關(guān)于尋找小人臉的論文一樣,使用物體周圍的背景也顯著有助于檢測。最后,他們采用了從高到低結(jié)合特征的FPN方法。

然而,架構(gòu)并不是他們唯一改變和創(chuàng)新的東西。訓(xùn)練過程也得到了改進(jìn),并對訓(xùn)練結(jié)果產(chǎn)生了很大的影響。第一個變化是為訓(xùn)練平衡數(shù)據(jù)集的特定方式。他們通過多次處理一些圖像來平衡數(shù)據(jù)集,而不是讓它保持原樣,然后調(diào)整損失函數(shù)來進(jìn)行均衡類別的學(xué)習(xí)。這使得每個時代的階級分布更加均勻。他們改變的第二件事是添加了一個隨機(jī)旋轉(zhuǎn)。因此,它們不是將圖像旋轉(zhuǎn)90或180度,而是將圖像旋轉(zhuǎn)一個隨機(jī)生成的角度,例如13.53。這需要重新計算邊界框,你可以在原始論文中看到公式。

Small Object Detection with Multiscale Features

本文作者也使用Faster-RCNN作為主要網(wǎng)絡(luò)。他們所做的修改與FPN的想法相似 —— 將高層的特征與低層的特征結(jié)合起來。但是,他們沒有迭代地組合層,而是將它們連接起來,并對結(jié)果運行1×1卷積。這在作者提供的體系結(jié)構(gòu)可視化中得到了最好的體現(xiàn)。

在結(jié)果表中,他們顯示,與普通的Faster-RCNN相比,這種方法使mAP增加了0.1。

SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network

首先,在讀到這種方法的名稱后,你可能會想:“等等,使用GAN來檢測目標(biāo)?”。但請耐心等待,這種方法的作者做了一件相當(dāng)聰明的事情。你可能之前就想到過:“如果物體都很小,為什么我們不放大它們呢?”簡單地使用插值將圖像放大的問題在于,對于原來的5×5的模糊的像素,我們將得到10×10(或20×20,或任何你設(shè)置的倍增因子)甚至更模糊的像素。這在某些情況下可能有所幫助,但通常情況下,這以處理更大的圖像和更長時間的訓(xùn)練為代價,提供了相對較小的性能提升。但是如果我們有一種方法可以放大圖像同時保留細(xì)節(jié)呢?這就是GANs發(fā)揮作用的地方。你可能知道,它們被證明在放大圖像時非常有效。所謂的超分辨率網(wǎng)絡(luò)(SRN)可以可靠地將圖像縮放到x4倍,如果你有時間訓(xùn)練它們并收集數(shù)據(jù)集的話,甚至可以更高。

但作者們也不僅僅是簡單地使用SRN來提升圖像,他們訓(xùn)練SRN的目的是創(chuàng)建圖像,使最終的檢測器更容易找到小物體,檢測器與生成器一起訓(xùn)練。因此,這里的SRN不僅用于使模糊的圖像看起來清晰,而且還用于為小物體創(chuàng)建描述性特征。正如你在之前的圖中看到的,它工作得很好,提供了一個顯著的提高準(zhǔn)確性。

總結(jié)

今天我們學(xué)到的是:

小目標(biāo)檢測仍然不是一個完全解決的問題,

上下文問題

放大圖像是個好主意

結(jié)合不同層的輸出

檢查預(yù)訓(xùn)練網(wǎng)絡(luò)的數(shù)據(jù)集,更好地評估其性能和利用它。

原文標(biāo)題:小目標(biāo)檢測的一些問題,思路和方案

文章出處:【微信公眾號:機(jī)器視覺自動化】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:小目標(biāo)檢測的一些問題,思路和方案

文章出處:【微信號:jiqishijue2020,微信公眾號:機(jī)器視覺自動化】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    廣和通發(fā)布端側(cè)目標(biāo)檢測模型FiboDet

    為提升端側(cè)設(shè)備視覺感知與決策能力,廣和通全自研端側(cè)目標(biāo)檢測模型FiboDet應(yīng)運而生。該模型基于廣和通在邊緣計算與人工智能領(lǐng)域的深度積累,面向工業(yè)、交通、零售等多個行業(yè)提供高性能、低功
    的頭像 發(fā)表于 09-26 13:39 ?1414次閱讀

    AIcube1.4目標(biāo)檢測模型導(dǎo)入yolotxt格式數(shù)據(jù)集后一直顯示數(shù)據(jù)正在解析,為什么?

    AIcube1.4目標(biāo)檢測模型導(dǎo)入yolotxt格式數(shù)據(jù)集后一直顯示數(shù)據(jù)正在解析 數(shù)據(jù)有問題,把數(shù)據(jù)情況說的詳細(xì)點
    發(fā)表于 08-13 07:16

    使用aicube進(jìn)行目標(biāo)檢測識別數(shù)字項目的時候,在評估環(huán)節(jié)卡住了,怎么解決?

    使用aicube進(jìn)行目標(biāo)檢測識別數(shù)字項目的時候,前面一切正常 但是在評估環(huán)節(jié)卡住了,一直顯示正在測試,但是完全沒有測試結(jié)果, 在部署完模型后在k230上運行也沒有任何識別結(jié)果 期待結(jié)果和實際結(jié)果
    發(fā)表于 08-13 06:45

    請問AICube所需的目標(biāo)檢測數(shù)據(jù)集標(biāo)注可以使用什么工具?

    請問AICube所需的目標(biāo)檢測數(shù)據(jù)集標(biāo)注可以使用什么工具? 我使用labelimg進(jìn)行標(biāo)注,標(biāo)注后的數(shù)據(jù)集改好文件名后導(dǎo)入不進(jìn)去。一直卡在數(shù)據(jù)解析界面。 下圖所示,數(shù)據(jù)集文件夾目錄,以及xml文件格式
    發(fā)表于 08-11 08:07

    基于FPGA的SSD目標(biāo)檢測算法設(shè)計

    隨著人工智能的發(fā)展,神經(jīng)網(wǎng)絡(luò)正被逐步應(yīng)用于智能安防、自動駕駛、醫(yī)療等各行各業(yè)。目標(biāo)識別作為人工智能的一項重要應(yīng)用也擁有著巨大的前景,隨著深度學(xué)習(xí)的普及和框架的成熟,卷積神經(jīng)網(wǎng)絡(luò)模型的識別精度越來越高
    的頭像 發(fā)表于 07-10 11:12 ?2226次閱讀
    基于FPGA的SSD<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>算法設(shè)計

    氣密性檢測儀的核心應(yīng)用范疇及其所針對的檢測目標(biāo)

    在工業(yè)生產(chǎn)與質(zhì)量控制領(lǐng)域,氣密性檢測儀是保障產(chǎn)品品質(zhì)與性能的關(guān)鍵設(shè)備。以下將圍繞氣密性檢測儀的核心應(yīng)用范疇及其所針對的檢測目標(biāo)展開介紹,以下是對上述關(guān)于氣密性
    的頭像 發(fā)表于 06-27 15:03 ?427次閱讀
    氣密性<b class='flag-5'>檢測</b>儀的核心應(yīng)用范疇及其所針對的<b class='flag-5'>檢測</b><b class='flag-5'>目標(biāo)</b>

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    是基于百度飛槳深度學(xué)習(xí)框架開發(fā)的一個高效的目標(biāo)檢測庫,支持多種先進(jìn)的目標(biāo)檢測模型,如 YOLO 系列、SSD、Faster R-CNN、M
    發(fā)表于 06-06 14:43

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    本文檔基于瑞芯微RV1106的LockAI凌智視覺識別模塊,通過C++語言做的目標(biāo)檢測實驗。本文檔展示了如何使用lockzhiner_vision_module::PaddleDet類進(jìn)行目標(biāo)
    的頭像 發(fā)表于 06-06 13:56 ?609次閱讀
    基于LockAI視覺識別模塊:C++<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    軒轅智駕紅外目標(biāo)檢測算法在汽車領(lǐng)域的應(yīng)用

    在 AI 技術(shù)蓬勃發(fā)展的當(dāng)下,目標(biāo)檢測算法取得了重大突破,其中紅外目標(biāo)檢測算法更是在汽車行業(yè)掀起了波瀾壯闊的變革,從根本上重塑著汽車的安全性能、駕駛體驗與產(chǎn)業(yè)生態(tài)。
    的頭像 發(fā)表于 03-27 15:55 ?747次閱讀

    睿創(chuàng)微納推出新一代目標(biāo)檢測算法

    隨著AI技術(shù)的發(fā)展,目標(biāo)檢測算法也迎來重大突破。睿創(chuàng)微納作為熱成像領(lǐng)軍者,憑借深厚的技術(shù)積累與創(chuàng)新能力,結(jié)合AI技術(shù)推出新一代目標(biāo)檢測算法,以三大核心技術(shù)帶來AI視覺感知全場景解決方案
    的頭像 發(fā)表于 03-20 13:49 ?800次閱讀

    AI Cube進(jìn)行yolov8n模型訓(xùn)練,創(chuàng)建項目目標(biāo)檢測時顯示數(shù)據(jù)集目錄下存在除標(biāo)注和圖片外的其他目錄如何處理?

    AI Cube進(jìn)行yolov8n模型訓(xùn)練 創(chuàng)建項目目標(biāo)檢測時顯示數(shù)據(jù)集目錄下存在除標(biāo)注和圖片外的其他目錄怎么解決
    發(fā)表于 02-08 06:21

    超聲波傳感器為特殊目標(biāo)物的穩(wěn)定檢測

    您是否仍在為特殊目標(biāo)物的穩(wěn)定檢測而困擾? 隨著電子行業(yè)的日新月異,新技術(shù)、新工藝不斷涌現(xiàn)。生產(chǎn)線上的目標(biāo)物愈發(fā)復(fù)雜多樣,精密的PCB板、高亮覆膜銅板,乃至形態(tài)各異的電車電池和透明的玻璃屏幕,都已
    的頭像 發(fā)表于 01-17 12:36 ?876次閱讀
    超聲波傳感器為特殊<b class='flag-5'>目標(biāo)</b>物的穩(wěn)定<b class='flag-5'>檢測</b>

    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成目標(biāo)檢測

    一、前言 1.1 開發(fā)需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法,完成圖像分析、目標(biāo)檢測。 隨著計算機(jī)視覺技術(shù)的飛速發(fā)展,深度學(xué)習(xí)模型
    的頭像 發(fā)表于 01-02 12:00 ?1026次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    以及邊緣計算能力的增強(qiáng),越來越多的目標(biāo)檢測應(yīng)用開始直接在靠近數(shù)據(jù)源的邊緣設(shè)備上運行。這不僅減少了數(shù)據(jù)傳輸延遲,保護(hù)了用戶隱私,同時也減輕了云端服務(wù)器的壓力。然而,在邊緣端部署高效且準(zhǔn)確的目標(biāo)
    發(fā)表于 12-19 14:33