chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

片上光學(xué)深度神經(jīng)網(wǎng)絡(luò)

中科院長春光機(jī)所 ? 來源:中科院長春光機(jī)所 ? 作者:中科院長春光機(jī)所 ? 2022-06-23 14:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從預(yù)測文本到醫(yī)學(xué)診斷,人工智能 (AI) 在許多系統(tǒng)中都發(fā)揮著重要作用。受人類大腦的啟發(fā),許多人工智能系統(tǒng)都是基于人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)的。

在人工神經(jīng)網(wǎng)絡(luò)中,被稱為“神經(jīng)元”的組件獲取輸入的數(shù)據(jù)并進(jìn)行處理從而解決各種問題,例如識別人臉。神經(jīng)網(wǎng)絡(luò)反復(fù)調(diào)整其神經(jīng)元之間的聯(lián)系,隨著時間的推移,網(wǎng)絡(luò)會設(shè)定最適合計(jì)算結(jié)果的參數(shù),從而模仿人腦中的學(xué)習(xí)過程。通過添加神經(jīng)層可以擴(kuò)大網(wǎng)絡(luò),如果一個神經(jīng)網(wǎng)絡(luò)擁有多層神經(jīng)元,它就被稱為“深度神經(jīng)網(wǎng)絡(luò)”。隨著層數(shù)的增加,該網(wǎng)絡(luò)以更高分辨率讀取更復(fù)雜圖像中數(shù)據(jù)的能力也在增強(qiáng)。

目前,經(jīng)典神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)圖像識別是在傳統(tǒng)圖像傳感器上創(chuàng)建的,例如智能手機(jī)中的數(shù)碼相機(jī)。圖像傳感器需要將光先轉(zhuǎn)化為電脈沖,再轉(zhuǎn)換為數(shù)字化數(shù)據(jù),從而可以使用計(jì)算機(jī)處理器進(jìn)行處理、分析、存儲和分類。

雖然目前在數(shù)字芯片上的消費(fèi)級圖像分類技術(shù)每秒可以執(zhí)行數(shù)十億次計(jì)算(GHz),這使得它對于大多數(shù)場景來說足夠快。但更復(fù)雜的圖像分類,例如識別高速移動物體、3D 物體識別,或自動駕駛,在實(shí)現(xiàn)過程中卻面臨著許多重大挑戰(zhàn)。

首先,傳統(tǒng)的數(shù)字芯片通常是基于數(shù)字時鐘的平臺來實(shí)現(xiàn),例如圖形處理單元(GPU),這將它們的計(jì)算速度限制在時鐘頻率上(<3 GHz)。同時,傳統(tǒng)電子設(shè)備基于馮諾依曼架構(gòu),將內(nèi)存和處理單元分開,而在這些組件之間來回的數(shù)據(jù)傳輸會浪費(fèi)時間和精力。

其次,原始的模擬圖像數(shù)據(jù)通常需要光電轉(zhuǎn)換為數(shù)字電子信號以及需要大內(nèi)存單元來存儲圖像和視頻,從而引發(fā)潛在的隱私問題。

近日,來自賓夕法尼亞大學(xué) Firooz Aflatouni 副教授團(tuán)隊(duì)已經(jīng)在光子微芯片上開發(fā)了一種光學(xué)深度神經(jīng)網(wǎng)絡(luò) PDNN(photonic deep neural network),消除了傳統(tǒng)計(jì)算機(jī)芯片中的四個主要耗時的罪魁禍?zhǔn)祝汗怆娦盘柕霓D(zhuǎn)換,模擬信號到數(shù)字信號的轉(zhuǎn)換、大內(nèi)存模塊和基于時鐘的計(jì)算。

該團(tuán)隊(duì)在 9.3 mm2的光子芯片在約 0.5 ns 內(nèi)實(shí)現(xiàn)整個圖像分類——這是最理想的數(shù)字計(jì)算機(jī)芯片只能完成一個計(jì)算步驟所需的時間。片上網(wǎng)絡(luò)對手寫字母進(jìn)行了二類和四類分類,準(zhǔn)確率分別高于 93.8% 和 89.8%。

該成果發(fā)表在Nature,題為“An on-chip photonic deep neural network for image classification”。

片上光學(xué)深度神經(jīng)網(wǎng)絡(luò)

該新設(shè)備標(biāo)志著第一個完全在集成光子設(shè)備上以可擴(kuò)展方式實(shí)現(xiàn)的深度神經(jīng)網(wǎng)絡(luò)。在 9.3 mm2的芯片中,線性計(jì)算是通過一個 5×6 的光柵耦合器陣列和光學(xué)衰減器光學(xué)執(zhí)行的。這些耦合器充當(dāng)輸入像素,輸出分為四個重疊的 3×4 像素子圖像,并使用納米光子波導(dǎo)饋入分布在三層的其他九個神經(jīng)元。線性運(yùn)算后,各個神經(jīng)元通過光電子方式的微環(huán)調(diào)制器的傳輸特性實(shí)現(xiàn)非線性激活函數(shù)。

科學(xué)家們讓他們的微芯片識別手寫字母。在一組測試中,它必須將 216 個字母分類為 p 或 d,而在另一組測試中,它必須將 432 個字母分類為 p、d、a 或 t。該芯片的精度分別高于 93.8% 和 89.8%。相比之下,使用 Keras 庫在 Python 中實(shí)現(xiàn)的 190 個神經(jīng)元的傳統(tǒng)深度神經(jīng)網(wǎng)絡(luò)在相同圖像上實(shí)現(xiàn)了 96% 的準(zhǔn)確率。

9439aecc-f2bc-11ec-ba43-dac502259ad0.png

圖2:光子深度神經(jīng)網(wǎng)絡(luò)芯片執(zhí)行分類任務(wù)的四分類字母樣本

圖源:賓夕法尼亞大學(xué)

更快、更強(qiáng)

由于該芯片可以在光信號上直接進(jìn)行光速線性處理,所以該芯片可以在 0.5 ns 內(nèi)完成整個圖像分類。該芯片通過“光學(xué)傳播計(jì)算”來處理信息,這意味著與基于時鐘的系統(tǒng)不同,計(jì)算是光在芯片上傳播時發(fā)生的。要了解該芯片處理信息的速度,可以對照電影的典型幀速率,一部電影通常每秒播放24 到 120 幀,而該芯片每秒能夠處理近 20 億幀。

此工作也跳過了將光信號轉(zhuǎn)換為電信號的步驟,因?yàn)樵撔酒梢灾苯幼x取和處理光信號,不需要存儲信息,無需大內(nèi)存單元。

這兩項(xiàng)變化都使其成為一種更快的技術(shù)。

消除內(nèi)存模塊還可以增強(qiáng)數(shù)據(jù)隱私,使用直接讀取圖像數(shù)據(jù)的芯片,不需要照片存儲,因此不會發(fā)生數(shù)據(jù)泄漏。通過加速圖像分類,片上深度神經(jīng)網(wǎng)絡(luò)可以改善自動駕駛汽車中的人臉識別和激光雷達(dá)傳感等應(yīng)用。

一個以光速讀取信息并提供更高程度網(wǎng)絡(luò)安全的芯片無疑會在許多領(lǐng)域產(chǎn)生影響;這是過去幾年對這項(xiàng)技術(shù)的研究不斷增加的原因之一。

該項(xiàng)研究的下一步將提升芯片的可擴(kuò)展性,處理三維圖像分類的工作,使用具有更多像素和神經(jīng)元的更大芯片對更高分辨率的圖像進(jìn)行處理。此外,不僅限于圖像和視頻分類,任何可以轉(zhuǎn)換為光域的信號,例如音頻和語音,都可以使用這項(xiàng)技術(shù)進(jìn)行幾乎瞬時的分類處理。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106068
  • 人工智能
    +關(guān)注

    關(guān)注

    1811

    文章

    49498

    瀏覽量

    258219
  • 光子芯片
    +關(guān)注

    關(guān)注

    3

    文章

    109

    瀏覽量

    25044

原文標(biāo)題:Nature | 每秒可處理近20億張圖的光子芯片

文章出處:【微信號:cas-ciomp,微信公眾號:中科院長春光機(jī)所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1038次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時也存在一些不容忽視的缺點(diǎn)。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1271次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1073次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?710次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1784次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,光學(xué)神經(jīng)網(wǎng)絡(luò)(ONN)的研究受到廣泛關(guān)注。研究人員從衍射光學(xué)、散射光、光干涉以及光學(xué)傅里葉變換等基礎(chǔ)理論出發(fā),利用各種
    的頭像 發(fā)表于 12-07 17:39 ?3128次閱讀
    基于<b class='flag-5'>光學(xué)</b>衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?931次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2249次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?1071次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks,F(xiàn)NN
    的頭像 發(fā)表于 11-15 14:47 ?2197次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1796次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1983次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1519次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?844次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101