chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于對(duì)抗自注意力機(jī)制的預(yù)訓(xùn)練語言模型

深度學(xué)習(xí)自然語言處理 ? 來源:ICLR 2022 ? 作者:曾偉豪 ? 2022-07-08 16:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Introduction

本文提出了 Adversarial Self-Attention 機(jī)制(ASA),利用對(duì)抗訓(xùn)練重構(gòu) Transformer 的注意力,使模型在被污染的模型結(jié)構(gòu)中得到訓(xùn)練。 嘗試解決的問題:

大量的證據(jù)表明,自注意力可以從 allowing bias 中獲益,allowing bias 可以將一定程度的先驗(yàn)(如 masking,分布的平滑)加入原始的注意力結(jié)構(gòu)中。這些先驗(yàn)知識(shí)能夠讓模型從較小的語料中學(xué)習(xí)有用的知識(shí)。但是這些先驗(yàn)知識(shí)一般是任務(wù)特定的知識(shí),使得模型很難擴(kuò)展到豐富的任務(wù)上。

adversarial training 通過給輸入內(nèi)容添加擾動(dòng)來提升模型的魯棒性。作者發(fā)現(xiàn)僅僅給 input embedding 添加擾動(dòng)很難 confuse 到 attention maps. 模型的注意在擾動(dòng)前后沒有發(fā)生變化。

為了解決上述問題,作者提出了 ASA,具有以下的優(yōu)勢:

最大化 empirical training risk,在自動(dòng)化構(gòu)建先驗(yàn)知識(shí)的過程學(xué)習(xí)得到biased(or adversarial)的結(jié)構(gòu)。

adversial 結(jié)構(gòu)是由輸入數(shù)據(jù)學(xué)到,使得 ASA 區(qū)別于傳統(tǒng)的對(duì)抗訓(xùn)練或自注意力的變體。

使用梯度反轉(zhuǎn)層來將 model 和 adversary 結(jié)合為整體。

ASA 天然具有可解釋性。

Preliminary

表示輸入的特征,在傳統(tǒng)的對(duì)抗訓(xùn)練中, 通常是 token 序列或者是 token 的 embedding, 表示 ground truth. 對(duì)于由 參數(shù)化的模型,模型的預(yù)測結(jié)果可以表示為 。

2.1 Adversarial training

對(duì)抗訓(xùn)練的目的是旨在通過推近經(jīng)過擾動(dòng)的模型預(yù)測和目標(biāo)分布之間的距離來提升模型的魯棒性:

d5da9fe0-fe9b-11ec-ba43-dac502259ad0.png

其中 代表經(jīng)過對(duì)抗擾動(dòng) 擾動(dòng)后的模型預(yù)測, 表示模型的目標(biāo)分布。 對(duì)抗擾動(dòng) 通過最大化 empirical training risk 獲得:

d5ee5a76-fe9b-11ec-ba43-dac502259ad0.png

其中 是對(duì) 做出的約束,希望在 較小的情況下給模型造成較大的擾動(dòng)。上述的兩個(gè)表示展示的就是對(duì)抗的過程。

2.2General Self-Attention

定義自注意力的表達(dá)式為:

d5fd9c52-fe9b-11ec-ba43-dac502259ad0.png

在最普通的自注意力機(jī)制中 代表全等矩陣,而之前的研究中, 代表的是用來平滑注意力結(jié)構(gòu)的輸出分布的一定程度的先驗(yàn)知識(shí)。 作者在本文將 定義為元素為 的 binary 矩陣。

Adversarial Self-Attention Mechanism

3.1 Optimization

ASA 的目的是掩蓋模型中最脆弱的注意力單元。這些最脆弱的單元取決于模型的輸入,因此對(duì)抗可以表示為由輸入學(xué)習(xí)到的“meta-knowledge”:,ASA 注意力可以表示為:

d619c8b4-fe9b-11ec-ba43-dac502259ad0.png

與對(duì)抗訓(xùn)練類似,模型用來最小化如下的 divergence:

d62c9c14-fe9b-11ec-ba43-dac502259ad0.png

通過最大化 empirical risk 估計(jì)得到 :

d63a855e-fe9b-11ec-ba43-dac502259ad0.png

其中 表示的是 的決策邊界,用來防止 ASA 損害模型的訓(xùn)練。

考慮到 以 attention mask 的形式存在,因此更適合通過約束 masked units 的比例來約束。由于很難測量 。 的具體數(shù)值,因此將 hard constraint 轉(zhuǎn)化為具有懲罰的 unconstraint:

d64eab74-fe9b-11ec-ba43-dac502259ad0.png

其中 t 用來控制對(duì)抗的程度。

3.2 Implementation

作者提出了 ASA 的簡單且快速的實(shí)現(xiàn)。

d663af10-fe9b-11ec-ba43-dac502259ad0.png

對(duì)于第 自注意力層, 可以由輸入的隱層狀態(tài)獲得。具體而言,使用線性層將隱層狀態(tài)轉(zhuǎn)化為 以及 ,通過點(diǎn)乘獲得矩陣 ,再通過重參數(shù)化技巧將矩陣 binary 化。 由于對(duì)抗訓(xùn)練通常包括 inner maximization 以及 outer minimization 兩個(gè)目標(biāo),因此至少需要兩次 backward 過程。因此為了加速訓(xùn)練,作者采用了 Gradient Reversal Layer(GRL)將兩個(gè)過程合并。

3.3 Training

訓(xùn)練目標(biāo)如下所示:

d677006a-fe9b-11ec-ba43-dac502259ad0.png

表示 task- specific 損失, 表示加上 ASA 對(duì)抗后的損失, 表示對(duì)于對(duì)于 的約束。

Experiments

4.1Result

d697f5f4-fe9b-11ec-ba43-dac502259ad0.png

從上表可以看出,在微調(diào)方面,ASA 支持的模型始終在很大程度上超過了原始的BERT 和 RoBERTa. 可以看到,ASA 在小規(guī)模數(shù)據(jù)集比如說 STS-B,DREAM 上表現(xiàn)優(yōu)異(一般認(rèn)為這些小規(guī)模數(shù)據(jù)集上更容易過擬合)同時(shí)在更大規(guī)模的數(shù)據(jù)集上如 MNLI,QNLI 以及 QQP 上仍然有較好的提升,說明了 ASA 在提升模型泛化能力的同時(shí)能提升模型的語言表示能力。 如下表所示,ASA 在提升模型魯棒性上具有較大的作用。

d6b2e4c2-fe9b-11ec-ba43-dac502259ad0.png

4.2 分析實(shí)驗(yàn)

1. VS. Naive smoothing 將 ASA 與其他注意力平滑方式進(jìn)行比較。

d6c547e8-fe9b-11ec-ba43-dac502259ad0.png

2. VS. Adversial training 將 ASA 與其他對(duì)抗訓(xùn)練方式進(jìn)行比較

d6d7050a-fe9b-11ec-ba43-dac502259ad0.png

4.3Visualization

1. Why ASA improves generalization 對(duì)抗能夠減弱關(guān)鍵詞的注意力而讓非關(guān)鍵詞接受更多的注意力。ASA 阻止了模型的懶惰預(yù)測,但敦促它從被污染的線索中學(xué)習(xí),從而提高了泛化能力。

d6efa628-fe9b-11ec-ba43-dac502259ad0.png

2. Bottom layers are more vulnerable 可以看到 masking 占比隨著層數(shù)由底層到高層逐漸降低,更高的 masking 占比意味著層的脆弱性更高。

d715222c-fe9b-11ec-ba43-dac502259ad0.png

Conclusion

本文提出了 Adversarial Self-Attention mechanism(ASA)來提高預(yù)訓(xùn)練語言模型的泛化性和魯棒性。大量實(shí)驗(yàn)表明本文提出的方法能夠在預(yù)訓(xùn)練和微調(diào)階段提升模型的魯棒性。

·審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 自動(dòng)化
    +關(guān)注

    關(guān)注

    29

    文章

    5832

    瀏覽量

    88022
  • 語言模型
    +關(guān)注

    關(guān)注

    0

    文章

    566

    瀏覽量

    11174

原文標(biāo)題:ICLR2022 | 基于對(duì)抗自注意力機(jī)制的預(yù)訓(xùn)練語言模型

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    小白學(xué)大模型:大模型加速的秘密 FlashAttention 1/2/3

    在Transformer架構(gòu)中,注意力機(jī)制的計(jì)算復(fù)雜度與序列長度(即文本長度)呈平方關(guān)系()。這意味著,當(dāng)模型需要處理更長的文本時(shí)(比如從幾千個(gè)詞到幾萬個(gè)詞),計(jì)算時(shí)間和所需的內(nèi)存會(huì)急劇增加。最開始
    的頭像 發(fā)表于 09-10 09:28 ?4100次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:大<b class='flag-5'>模型</b>加速的秘密 FlashAttention 1/2/3

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算魔方創(chuàng)始人/英特爾創(chuàng)新大使劉 《用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進(jìn)
    的頭像 發(fā)表于 03-21 18:24 ?3362次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    ?VLM(視覺語言模型)?詳細(xì)解析

    支持生成式任務(wù)。 多模態(tài)融合 :通過跨模態(tài)注意力機(jī)制、投影層(如CLIP將圖像文本映射到同一空間)或適配器
    的頭像 發(fā)表于 03-17 15:32 ?6729次閱讀
    ?VLM(視覺<b class='flag-5'>語言</b><b class='flag-5'>模型</b>)?詳細(xì)解析

    從Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無法導(dǎo)入名稱是怎么回事?

    從 Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以將 FastSeg 大型模型轉(zhuǎn)換為中間表示 (IR): pyth
    發(fā)表于 03-05 07:22

    小白學(xué)大模型訓(xùn)練語言模型的深度指南

    在當(dāng)今人工智能飛速發(fā)展的時(shí)代,大型語言模型(LLMs)正以其強(qiáng)大的語言理解和生成能力,改變著我們的生活和工作方式。在最近的一項(xiàng)研究中,科學(xué)家們?yōu)榱松钊肓私馊绾胃咝У?b class='flag-5'>訓(xùn)練大型
    的頭像 發(fā)表于 03-03 11:51 ?1048次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:<b class='flag-5'>訓(xùn)練</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的深度指南

    用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    作者:算魔方創(chuàng)始人/英特爾創(chuàng)新大使劉 之前我們分享了《從零開始訓(xùn)練一個(gè)大語言模型需要投資多少錢》,其中高昂的
    的頭像 發(fā)表于 02-19 16:10 ?1737次閱讀
    用PaddleNLP在4060單卡上實(shí)踐大<b class='flag-5'>模型</b><b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    DeepSeek推出NSA機(jī)制,加速長上下文訓(xùn)練與推理

    近日,DeepSeek公司宣布推出一種全新的稀疏注意力機(jī)制——NSA(Native Sparse Attention)。據(jù)DeepSeek介紹,NSA旨在與現(xiàn)代硬件實(shí)現(xiàn)高度一致,并且具備本機(jī)可訓(xùn)練
    的頭像 發(fā)表于 02-19 14:01 ?813次閱讀

    騰訊公布大語言模型訓(xùn)練新專利

    近日,騰訊科技(深圳)有限公司公布了一項(xiàng)名為“大語言模型訓(xùn)練方法、裝置、計(jì)算機(jī)設(shè)備及存儲(chǔ)介質(zhì)”的新專利。該專利的公布,標(biāo)志著騰訊在大語言模型
    的頭像 發(fā)表于 02-10 09:37 ?597次閱讀

    如何使用MATLAB構(gòu)建Transformer模型

    LanguageProcessing, NLP)中的序列到序列任務(wù),如機(jī)器翻譯。Transformer 通過引入注意力機(jī)制使得處理長距離依賴關(guān)系時(shí)變得高效。因此 Vaswani 等人的論文強(qiáng)調(diào)“
    的頭像 發(fā)表于 02-06 10:21 ?5274次閱讀
    如何使用MATLAB構(gòu)建Transformer<b class='flag-5'>模型</b>

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    的應(yīng)用。MAML算法通過二階優(yōu)化找到對(duì)任務(wù)變化敏感的模型參數(shù),實(shí)現(xiàn)了快速適應(yīng)。上下文學(xué)習(xí)則引入了注意力機(jī)制,使模型能夠根據(jù)當(dāng)前場景動(dòng)態(tài)調(diào)整行為策略。在
    發(fā)表于 12-24 15:03

    什么是大模型、大模型是怎么訓(xùn)練出來的及大模型作用

    ,基礎(chǔ)模型。 ? 大模型是一個(gè)簡稱,完整的叫法,應(yīng)該是“人工智能預(yù)訓(xùn)練模型”。預(yù)
    的頭像 發(fā)表于 11-25 09:29 ?1.5w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓(xùn)練</b>出來的及大<b class='flag-5'>模型</b>作用

    什么是LLM?LLM在自然語言處理中的應(yīng)用

    所未有的精度和效率處理和生成自然語言。 LLM的基本原理 LLM基于深度學(xué)習(xí)技術(shù),尤其是變換器(Transformer)架構(gòu)。變換器模型因其注意力(Self-Attention)
    的頭像 發(fā)表于 11-19 15:32 ?4218次閱讀

    一種基于因果路徑的層次圖卷積注意力網(wǎng)絡(luò)

    機(jī)電系統(tǒng)中數(shù)據(jù)驅(qū)動(dòng)故障檢測模型的性能和可解釋性。引入了一種混合因果發(fā)現(xiàn)算法來發(fā)現(xiàn)監(jiān)測變量之間的繼承因果關(guān)系。順序連接因果變量的因果路徑用作接收?qǐng)?,使用多尺度卷積來提取特征?;诜謱?b class='flag-5'>注意力機(jī)制來聚合
    的頭像 發(fā)表于 11-12 09:52 ?1396次閱讀
    一種基于因果路徑的層次圖卷積<b class='flag-5'>注意力</b>網(wǎng)絡(luò)

    從零開始訓(xùn)練一個(gè)大語言模型需要投資多少錢?

    一,前言 ? 在AI領(lǐng)域,訓(xùn)練一個(gè)大型語言模型(LLM)是一個(gè)耗時(shí)且復(fù)雜的過程。幾乎每個(gè)做大型語言模型(LLM)
    的頭像 發(fā)表于 11-08 14:15 ?1162次閱讀
    從零開始<b class='flag-5'>訓(xùn)練</b>一個(gè)大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>需要投資多少錢?

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    鷺島論壇數(shù)據(jù)智能系列講座第4期「預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)」10月30日(周三)20:00精彩開播期待與您云相聚,共襄學(xué)術(shù)盛宴!|直播信息報(bào)告題目預(yù)
    的頭像 發(fā)表于 10-18 08:09 ?815次閱讀
    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)<b class='flag-5'>模型</b>下的持續(xù)學(xué)習(xí)