chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)形態(tài)傳感改變計算機視覺焦點

孔妞妞 ? 2022-07-20 18:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

這項技術(shù)的創(chuàng)始人之一表示,基于攝像機的計算機視覺技術(shù)效率極低,促使人們需要替代解決方案。

計算機視覺是否會再次自我改造?

匹茲堡大學眼科教授、CMU 機器人研究所兼職教授 Ryad Benosman 認為確實如此。作為基于事件的視覺技術(shù)的創(chuàng)始人之一,Benosman 預計神經(jīng)形態(tài)視覺——基于基于事件的相機的計算機視覺——是計算機視覺的下一個方向。

“計算機視覺已經(jīng)被改造了很多很多次,”他說。“我已經(jīng)看到它至少重新發(fā)明了兩次,從零開始,從零開始?!?/p>

poYBAGLOlI6AR-ahAAMa8AL4DT8424.jpg


Ryad Benosman(來源:匹茲堡大學)

Benosman 引用了 1990 年代從帶有一點攝影測量的圖像處理到基于幾何的方法的轉(zhuǎn)變,然后是今天機器學習的快速變化。盡管發(fā)生了這些變化,現(xiàn)代計算機視覺技術(shù)仍然主要基于圖像傳感器——產(chǎn)生類似于人眼所見圖像的相機。

根據(jù) Benosman 的說法,在圖像傳感范式不再有用之前,它會阻礙替代技術(shù)的創(chuàng)新。這種影響因 GPU 等高性能處理器的發(fā)展而延長,延遲了尋找替代解決方案的需要。

“我們?yōu)槭裁磳D像用于計算機視覺?這是一個價值百萬美元的問題,”他說。“我們沒有理由使用圖像,這只是因為歷史的動力。甚至在沒有相機之前,圖像就有動力?!?/p>

圖像相機

自公元前五世紀針孔相機出現(xiàn)以來,圖像相機就一直存在到 1500 年代,藝術(shù)家們建造了房間大小的設(shè)備,用于在畫布上追蹤房間外的人或風景的圖像。多年來,這些畫被替換為膠片來記錄圖像。數(shù)碼攝影等創(chuàng)新最終使圖像相機很容易成為現(xiàn)代計算機視覺技術(shù)的基礎(chǔ)。

然而,Benosman 認為,基于圖像相機的計算機視覺技術(shù)效率極低。他的類比是中世紀城堡的防御系統(tǒng):位于城墻周圍的守衛(wèi)向各個方向?qū)ふ医咏臄橙恕9氖址€(wěn)定地敲打,每一個鼓點,每個守衛(wèi)都會大聲喊出他們所看到的。在所有的呼喊聲中,聽到一個守衛(wèi)在遙遠的森林邊緣發(fā)現(xiàn)敵人是多么容易?

21世紀的鼓聲硬件等價物是電子時鐘信號,而守衛(wèi)是像素——大量數(shù)據(jù)被創(chuàng)建并且必須在每個時鐘周期進行檢查,這意味著存在大量冗余信息和大量信息。需要不必要的計算。

poYBAGLOlJSAHzZQAAE0lfXsSzo853.jpg


Prophesee 與索尼合作開發(fā)的 DVS 傳感器評估套件。Benosman 是 Prophesee 的聯(lián)合創(chuàng)始人(來源:Prophesee)

“人們正在燃燒如此多的能量,它占用了城堡的整個計算能力來保護自己,”貝諾斯曼說。如果發(fā)現(xiàn)一個有趣的事件,在這個類比中以敵人為代表,“你必須四處走走收集無用的信息,到處都是人在尖叫,所以帶寬很大……現(xiàn)在想象你有一座復雜的城堡. 所有這些人都必須被聽到。”

進入神經(jīng)形態(tài)視覺。基本思想受到生物系統(tǒng)工作方式的啟發(fā),即檢測場景動態(tài)的變化,而不是連續(xù)分析整個場景。在我們的城堡類比中,這意味著讓守衛(wèi)保持安靜,直到他們看到感興趣的東西,然后喊出他們的位置以發(fā)出警報。在電子版中,這意味著讓單個像素決定他們是否看到相關(guān)的東西。

“像素可以自行決定他們應(yīng)該發(fā)送什么信息,而不是獲取系統(tǒng)信息,他們可以尋找有意義的信息——特征,”他說?!斑@就是與眾不同的地方。”

與固定頻率的系統(tǒng)采集相比,這種基于事件的方法可以節(jié)省大量電力并減少延遲。

“你想要一些更具適應(yīng)性的東西,這就是[基于事件的視覺]的相對變化給你的東西,一個適應(yīng)性的采集頻率,”他說。“當你觀察幅度變化時,如果某些東西移動得非常快,我們就會得到很多樣本。如果某些東西沒有改變,你會得到幾乎為零,所以你正在根據(jù)場景的動態(tài)調(diào)整你的采集頻率。這就是它帶來的東西。這就是為什么它是一個好的設(shè)計。”

Benosman 于 2000 年進入神經(jīng)形態(tài)視覺領(lǐng)域,他堅信先進的計算機視覺永遠無法發(fā)揮作用,因為圖像不是正確的方法。

“最大的轉(zhuǎn)變是說我們可以在沒有灰度和沒有圖像的情況下進行視覺,這在 2000 年底是異端——完全是異端,”他說。

Benosman 提出的技術(shù)——今天基于事件的傳感的基礎(chǔ)——是如此不同,以至于提交給當時最重要的 IEEE 計算機視覺期刊的論文未經(jīng)審查就被拒絕了。事實上,直到 2008 年動態(tài)視覺傳感器 (DVS) 的開發(fā),該技術(shù)才開始獲得動力。

神經(jīng)科學靈感

神經(jīng)形態(tài)技術(shù)是受生物系統(tǒng)啟發(fā)的技術(shù),包括終極計算機、大腦及其計算元素神經(jīng)元。問題是沒有人完全理解神經(jīng)元是如何工作的。雖然我們知道神經(jīng)元對傳入的稱為尖峰的電信號起作用,但直到最近,研究人員仍將神經(jīng)元描述為相當草率,認為只有尖峰的數(shù)量很重要。這個假設(shè)持續(xù)了幾十年。最近的研究證明,這些尖峰的時間是絕對關(guān)鍵的,并且大腦的結(jié)構(gòu)正在這些尖峰中產(chǎn)生延遲以編碼信息。

今天的尖峰神經(jīng)網(wǎng)絡(luò)模擬大腦中看到的尖峰信號,是真實事物的簡化版本——通常是尖峰的二進制表示?!拔沂盏揭粋€ 1,我醒來,我計算,我睡覺,”Benosman 解釋說?,F(xiàn)實要復雜得多。當尖峰到來時,神經(jīng)元開始隨著時間的推移對尖峰的值進行積分;神經(jīng)元也有泄漏,這意味著結(jié)果是動態(tài)的。還有大約 50 種不同類型的神經(jīng)元具有 50 種不同的集成配置文件。今天的電子版本缺少集成的動態(tài)路徑、神經(jīng)元之間的連接以及不同的權(quán)重和延遲。

“問題是要制造一個有效的產(chǎn)品,你不能[模仿]所有的復雜性,因為我們不理解它,”他說。“如果我們有好的大腦理論,我們會解決它——問題是我們只是不知道[足夠]?!?/p>

今天,Bensoman 經(jīng)營著一個獨特的實驗室,致力于了解皮層計算背后的數(shù)學,旨在創(chuàng)建新的數(shù)學模型并將其復制為硅設(shè)備。這包括直接監(jiān)測來自真實視網(wǎng)膜的尖峰。

目前,貝諾斯曼反對忠實地復制生物神經(jīng)元,稱這種方法過時。

“在硅中復制神經(jīng)元的想法的產(chǎn)生是因為人們觀察了晶體管并看到了一個看起來像真正神經(jīng)元的機制,所以一開始它背后有一些想法,”他說。“我們沒有細胞;我們有硅。你需要適應(yīng)你的計算基板,而不是相反……如果我知道我在計算什么并且我有芯片,我可以優(yōu)化這個方程式并以最低的成本、最低的功耗、最低的延遲運行它。”

處理能力

意識到?jīng)]有必要精確復制神經(jīng)元,再加上 DVS 相機的發(fā)展,是當今神經(jīng)形態(tài)視覺系統(tǒng)背后的驅(qū)動力。雖然今天的系統(tǒng)已經(jīng)上市,但在我們擁有完全類似于人類的視覺可用于商業(yè)用途之前,還有很長的路要走。

最初的 DVS 相機具有“大而粗的像素”,因為光電二極管本身周圍的組件大大降低了填充因子。雖然對開發(fā)這些攝像機的投資加速了這項技術(shù),但 Benosman 明確表示,今天的事件攝像機只是對早在 2000 年開發(fā)的原始研究設(shè)備的改進。來自索尼的最先進的 DVS 攝像機,三星和 Omnivision 擁有微小的像素,融合了 3D 堆疊等先進技術(shù)并降低了噪點。Benosman 擔心的是今天使用的傳感器類型能否成功擴大規(guī)模。

“問題是,一旦你增加像素數(shù)量,你就會得到大量數(shù)據(jù),因為你的速度仍然非??欤彼f?!澳憧赡苋匀豢梢詫崟r處理它,但是你會從太多的像素中得到太多的相對變化。這現(xiàn)在正在殺死所有人,因為他們看到了潛力,但他們沒有合適的處理器來支持它?!?/p>

通用神經(jīng)形態(tài)處理器落后于 DVS 相機對應(yīng)物。一些業(yè)內(nèi)最大的參與者(IBM Truenorth、英特爾 Loihi)的努力仍在進行中。Benosman 表示,正確的處理器和正確的傳感器將是無與倫比的組合。

“[今天的 DVS] 傳感器速度極快,帶寬超低,動態(tài)范圍大,因此您可以在室內(nèi)和室外看到,”Benosman 說。“這是未來。它會起飛嗎?絕對地!”

“誰能把處理器放在那里并提供完整的堆棧,誰就贏了,因為它將是無與倫比的,”他補充道。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2566

    文章

    53008

    瀏覽量

    767653
  • DVS
    DVS
    +關(guān)注

    關(guān)注

    0

    文章

    18

    瀏覽量

    9826
  • 神經(jīng)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    12669
  • 計算機視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1709

    瀏覽量

    46784
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    利用邊緣計算和工業(yè)計算機實現(xiàn)智能視頻分析

    IVA的好處、實際部署應(yīng)用程序以及工業(yè)計算機如何實現(xiàn)這些解決方案。一、什么是智能視頻分析(IVA)?智能視頻分析(IVA)集成了復雜的計算機視覺,通常與卷積神經(jīng)網(wǎng)
    的頭像 發(fā)表于 05-16 14:37 ?164次閱讀
    利用邊緣<b class='flag-5'>計算</b>和工業(yè)<b class='flag-5'>計算機</b>實現(xiàn)智能視頻分析

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負載的廣泛增長,推動了對計算機視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實世界的視覺信息,并可應(yīng)用于人臉識別、照片分類、濾鏡處理及增強現(xiàn)實
    的頭像 發(fā)表于 02-24 10:15 ?571次閱讀

    AR和VR中的計算機視覺

    ):計算機視覺引領(lǐng)混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1584次閱讀
    AR和VR中的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    云端超級計算機使用教程

    云端超級計算機是一種基于云計算的高性能計算服務(wù),它將大量計算資源和存儲資源集中在一起,通過網(wǎng)絡(luò)向用戶提供按需的計算服務(wù)。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?554次閱讀

    工業(yè)中使用哪種計算機?

    在工業(yè)環(huán)境中,工控機被廣泛使用。這些計算機的設(shè)計可承受極端溫度、灰塵和振動等惡劣條件。它們比標準消費類計算機更耐用、更可靠。工業(yè)計算機可控制機器、監(jiān)控流程并實時收集數(shù)據(jù)。其堅固的結(jié)構(gòu)和專業(yè)功能
    的頭像 發(fā)表于 11-29 14:07 ?716次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計算機</b>?

    量子計算機與普通計算機工作原理的區(qū)別

    超越世界上最強大的超級計算機,完成以前不可想象的任務(wù)!這意味著量子計算機可能會徹底改變我們的生活。 在本文中,我們將先了解普通計算機的工作原理,再深入探討量子
    的頭像 發(fā)表于 11-24 11:00 ?1506次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區(qū)別

    工業(yè)計算機類型介紹

    工業(yè)領(lǐng)域沒有計算機的世界就像沒有管弦樂隊的交響樂,缺乏實現(xiàn)最佳性能所需的和諧和精確度。計算機徹底改變了工業(yè)的運作方式,將效率、準確性和創(chuàng)新推向了新的高度。事實上,根據(jù)最近在印度進行的一項研究
    的頭像 發(fā)表于 11-04 15:56 ?673次閱讀
    工業(yè)<b class='flag-5'>計算機</b>類型介紹

    【小白入門必看】一文讀懂深度學習計算機視覺技術(shù)及學習路線

    一、什么是計算機視覺計算機視覺,其實就是教機器怎么像我們?nèi)艘粯?,用攝像頭看看周圍的世界,然后理解它。比如說,它能認出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1247次閱讀
    【小白入門必看】一文讀懂深度學習<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術(shù)及學習路線

    計算機接口位于什么之間

    計算機接口是計算機硬件和軟件之間、計算機與外部設(shè)備之間以及計算機各部件之間傳輸數(shù)據(jù)、控制信息和狀態(tài)信息的硬件設(shè)備和軟件程序。它在計算機系統(tǒng)中
    的頭像 發(fā)表于 10-14 14:02 ?1325次閱讀

    簡述計算機總線的分類

    計算機總線作為計算機系統(tǒng)中連接各個功能部件的公共通信干線,其結(jié)構(gòu)和分類對于理解計算機硬件系統(tǒng)的工作原理至關(guān)重要。以下是對計算機總線結(jié)構(gòu)和分類的詳細闡述,內(nèi)容將涵蓋總線的基本概念、內(nèi)部結(jié)
    的頭像 發(fā)表于 08-26 16:23 ?5187次閱讀

    晶體管計算機和電子管計算機有什么區(qū)別

    晶體管計算機和電子管計算機作為計算機發(fā)展史上的兩個重要階段,它們在多個方面存在顯著的區(qū)別。以下是對這兩類計算機在硬件、性能、應(yīng)用以及技術(shù)發(fā)展等方面區(qū)別的詳細闡述。
    的頭像 發(fā)表于 08-23 15:28 ?3623次閱讀

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2055次閱讀

    計算機視覺中的圖像融合

    在許多計算機視覺應(yīng)用中(例如機器人運動和醫(yī)學成像),需要將多個圖像的相關(guān)信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準確性和數(shù)據(jù)質(zhì)量。多視圖融合可以提高圖像分辨率,并恢復場景的三維表示
    的頭像 發(fā)表于 08-01 08:28 ?1143次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的圖像融合

    地平線科研論文入選國際計算機視覺頂會ECCV 2024

    近日,地平線兩篇論文入選國際計算機視覺頂會ECCV 2024,自動駕駛算法技術(shù)再有新突破。
    的頭像 發(fā)表于 07-27 11:10 ?1467次閱讀
    地平線科研論文入選國際<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>頂會ECCV 2024

    計算機視覺技術(shù)的AI算法模型

    計算機視覺技術(shù)作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標,計算機視覺技術(shù)依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1820次閱讀