chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

機器視覺三種常用的目標識別方法進行對比

QQ475400555 ? 來源:機器視覺沙龍 ? 作者:機器視覺沙龍 ? 2022-11-09 17:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

隨著機器視覺技術的快速發(fā)展,傳統(tǒng)很多需要人工來手動操作的工作,漸漸地被機器所替代。

傳統(tǒng)方法做目標識別大多都是靠人工實現(xiàn),從形狀、顏色、長度、寬度、長寬比來確定被識別的目標是否符合標準,最終定義出一系列的規(guī)則來進行目標識別。這樣的方法當然在一些簡單的案例中已經(jīng)應用的很好,唯一的缺點是隨著被識別物體的變動,所有的規(guī)則和算法都要重新設計和開發(fā),即使是同樣的產(chǎn)品,不同批次的變化都會造成不能重用的現(xiàn)實。

而隨著機器學習,深度學習的發(fā)展,很多肉眼很難去直接量化的特征,深度學習可以自動學習這些特征,這就是深度學習帶給我們的優(yōu)點和前所未有的吸引力。

很多特征我們通過傳統(tǒng)算法無法量化,或者說很難去做到的,深度學習可以。特別是在圖像分類、目標識別這些問題上有顯著的提升。

視覺常用的目標識別方法有三種:Blob分析法(BlobAnalysis)、模板匹配法、深度學習法。下面就三種常用的目標識別方法進行對比。

Blob分析法

BlobAnalysis

計算機視覺中的Blob是指圖像中的具有相似顏色、紋理等特征所組成的一塊連通區(qū)域。Blob分析(BlobAnalysis)是對圖像中相同像素的連通域進行分析(該連通域稱為Blob)。其過程就是將圖像進行二值化,分割得到前景和背景,然后進行連通區(qū)域檢測,從而得到Blob塊的過程。簡單來說,blob分析就是在一塊“光滑”區(qū)域內(nèi),將出現(xiàn)“灰度突變”的小區(qū)域?qū)ふ页鰜怼?/p>

舉例來說,假如現(xiàn)在有一塊剛生產(chǎn)出來的玻璃,表面非常光滑,平整。如果這塊玻璃上面沒有瑕疵,那么,我們是檢測不到“灰度突變”的;相反,如果在玻璃生產(chǎn)線上,由于種種原因,造成了玻璃上面有一個凸起的小泡、有一塊黑斑、有一點裂縫,那么,我們就能在這塊玻璃上面檢測到紋理,經(jīng)二值化(BinaryThresholding)處理后的圖像中色斑可認為是blob。而這些部分,就是生產(chǎn)過程中造成的瑕疵,這個過程,就是Blob分析。

Blob分析工具可以從背景中分離出目標,并可以計算出目標的數(shù)量、位置、形狀、方向和大小,還可以提供相關斑點間的拓撲結構。在處理過程中不是對單個像素逐一分析,而是對圖像的行進行操作。圖像的每一行都用游程長度編碼(RLE)來表示相鄰的目標范圍。這種算法與基于像素的算法相比,大大提高了處理的速度。

3535c876-3ee7-11ed-9e49-dac502259ad0.png

但另一方面,Blob分析并不適用于以下圖像:

1.低對比度圖像;

2.必要的圖像特征不能用2個灰度級描述;

3.按照模版檢測(圖形檢測需求)。

總的來說,Blob分析就是檢測圖像的斑點,適用于背景單一,前景缺陷不區(qū)分類別,識別精度要求不高的場景。

模板匹配法

template matching

模板匹配是一種最原始、最基本的模式識別方法,研究某一特定對象物的圖案位于圖像的什么地方,進而識別對象物,這就是一個匹配問題。它是圖像處理中最基本、最常用的匹配方法。換句話說就是一副已知的需要匹配的小圖像,在一副大圖像中搜尋目標,已知該圖中有要找的目標,且該目標同模板有相同的尺寸、方向和圖像元素,通過統(tǒng)計計算圖像的均值、梯度、距離、方差等特征可以在圖中找到目標,確定其坐標位置。

這就說明,我們要找的模板是圖像里標標準準存在的,這里說的標標準準,就是說,一旦圖像或者模板發(fā)生變化,比如旋轉(zhuǎn),修改某幾個像素,圖像翻轉(zhuǎn)等操作之后,我們就無法進行匹配了,這也是這個算法的弊端。

所以這種匹配算法,就是在待檢測圖像上,從左到右,從上向下對模板圖像與小東西的圖像進行比對。

356d8a7c-3ee7-11ed-9e49-dac502259ad0.png

這種方法相比Blob分析有較好的檢測精度,同時也能區(qū)分不同的缺陷類別,這相當于是一種搜索算法,在待檢測圖像上根據(jù)不同roi用指定的匹配方法與模板庫中的所有圖像進行搜索匹配,要求缺陷的形狀、大小、方法都有較高的一致性,因此想要獲得可用的檢測精度需要構建較完善的模板庫。

深度學習法

deep learning method

2014年R-CNN的提出,使得基于CNN的目標檢測算法逐漸成為主流。深度學習的應用,使檢測精度和檢測速度都獲得了改善。

卷積神經(jīng)網(wǎng)絡不僅能夠提取更高層、表達能力更好的特征,還能在同一個模型中完成對于特征的提取、選擇和分類。

在這方面,主要有兩類主流的算法:

一類是結合RPN網(wǎng)絡的,基于分類的R-CNN系列兩階目標檢測算法(twostage);

另一類則是將目標檢測轉(zhuǎn)換為回歸問題的一階目標檢測算法(singlestage)。

物體檢測的任務是找出圖像或視頻中的感興趣物體,同時檢測出它們的位置和大小,是機器視覺領域的核心問題之一。

35947592-3ee7-11ed-9e49-dac502259ad0.png

物體檢測過程中有很多不確定因素,如圖像中物體數(shù)量不確定,物體有不同的外觀、形狀、姿態(tài),加之物體成像時會有光照、遮擋等因素的干擾,導致檢測算法有一定的難度。

進入深度學習時代以來,物體檢測發(fā)展主要集中在兩個方向:twostage算法如R-CNN系列和onestage算法如YOLO、SSD等。兩者的主要區(qū)別在于twostage算法需要先生成proposal(一個有可能包含待檢物體的預選框),然后進行細粒度的物體檢測。而onestage算法會直接在網(wǎng)絡中提取特征來預測物體分類和位置。

兩階算法中區(qū)域提取算法核心是卷積神經(jīng)網(wǎng)絡CNN,先利用CNN骨干提取特征,然后找出候選區(qū)域,最后滑動窗口確定目標類別與位置。

R-CNN首先通過SS算法提取2k個左右的感興趣區(qū)域,再對感興趣區(qū)域進行特征提取。存在缺陷:感興趣區(qū)域彼此之間權值無法共享,存在重復計算,中間數(shù)據(jù)需單獨保存占用資源,對輸入圖片強制縮放影響檢測準確度。

35d35028-3ee7-11ed-9e49-dac502259ad0.png

SPP-NET在最后一個卷積層和第一個全連接層之間做些處理,保證輸入全連接層的尺寸一致即可解決輸入圖像尺寸受限的問題。SPP-NET候選區(qū)域包含整張圖像,只需通過一次卷積網(wǎng)絡即可得到整張圖像和所有候選區(qū)域的特征。

FastR-CNN借鑒SPP-NET的特征金字塔,提出ROIPooling把各種尺寸的候選區(qū)域特征圖映射成統(tǒng)一尺度的特征向量,首先,將不同大小的候選區(qū)域都切分成M×N塊,再對每塊都進行maxpooling得到1個值。這樣,所有候選區(qū)域特征圖就都統(tǒng)一成M×N維的特征向量了。但是,利用SS算法產(chǎn)生候選框?qū)r間消耗非常大。

FasterR-CNN是先用CNN骨干網(wǎng)提取圖像特征,由RPN網(wǎng)絡和后續(xù)的檢測器共享,特征圖進入RPN網(wǎng)絡后,對每個特征點預設9個不同尺度和形狀的錨盒,計算錨盒和真實目標框的交并比和偏移量,判斷該位置是否存在目標,將預定義的錨盒分為前景或背景,再根據(jù)偏差損失訓練RPN網(wǎng)絡,進行位置回歸,修正ROI的位置,最后將修正的ROI傳入后續(xù)網(wǎng)絡。但是,在檢測過程中,RPN網(wǎng)絡需要對目標進行一次回歸篩選以區(qū)分前景和背景目標,后續(xù)檢測網(wǎng)絡對RPN輸出的ROI再一次進行細分類和位置回歸,兩次計算導致模型參數(shù)量大。

MaskR-CNN在FasterR-CNN中加了并行的mask分支,對每個ROI生成一個像素級別的二進制掩碼。在FasterR-CNN中,采用ROIPooling產(chǎn)生統(tǒng)一尺度的特征圖,這樣再映射回原圖時就會產(chǎn)生錯位,使像素之間不能精準對齊。這對目標檢測產(chǎn)生的影響相對較小,但對于像素級的分割任務,誤差就不容忽視了。MaskR-CNN中用雙線性插值解決像素點不能精準對齊的問題。但是,由于繼承兩階段算法,實時性仍不理想。

一階算法在整個卷積網(wǎng)絡中進行特征提取、目標分類和位置回歸,通過一次反向計算得到目標位置和類別,在識別精度稍弱于兩階段目標檢測算法的前提下,速度有了極大的提升。

YOLOv1把輸入圖像統(tǒng)一縮放到448×448×3,再劃分為7×7個網(wǎng)格,每格負責預測兩個邊界框bbox的位置和置信度。這兩個b-box對應同一個類別,一個預測大目標,一個預測小目標。bbox的位置不需要初始化,而是由YOLO模型在權重初始化后計算出來的,模型在訓練時隨著網(wǎng)絡權重的更新,調(diào)整b-box的預測位置。但是,該算法對小目標檢測不佳,每個網(wǎng)格只能預測一個類別。

YOLOv2把原始圖像劃分為13×13個網(wǎng)格,通過聚類分析,確定每個網(wǎng)格設置5個錨盒,每個錨盒預測1個類別,通過預測錨盒和網(wǎng)格之間的偏移量進行目標位置回歸。

SSD保留了網(wǎng)格劃分方法,但從基礎網(wǎng)絡的不同卷積層提取特征。隨著卷積層數(shù)的遞增,錨盒尺寸設置由小到大,以此提升SSD對多尺度目標的檢測精度。

YOLOv3通過聚類分析,每個網(wǎng)格預設3個錨盒,只用darknet前52層,并大量使用殘差層。使用降采樣降低池化對梯度下降的負面效果。YOLOv3通過上采樣提取深層特征,使其與將要融合的淺層特征維度相同,但通道數(shù)不同,在通道維度上進行拼接實現(xiàn)特征融合,融合了13×13×255、26×26×255和52×52×255共3個尺度的特征圖,對應的檢測頭也都采用全卷積結構。

YOLOv4在原有YOLO目標檢測架構的基礎上,采用了近些年CNN領域中最優(yōu)秀的優(yōu)化策略,從數(shù)據(jù)處理、主干網(wǎng)絡、網(wǎng)絡訓練、激活函數(shù)、損失函數(shù)等各個方面都進行了不同程度的優(yōu)化。時至今日,已經(jīng)有很多精度比較高的目標檢測算法提出,包括最近視覺領域的transformer研究也一直在提高目標檢測算法的精度。

總結來看,表示的選擇會對機器學習算法的性能產(chǎn)生巨大的影響,監(jiān)督學習訓練的前饋網(wǎng)絡可視為表示學習的一種形式。依此來看傳統(tǒng)的算法如Blob分析和模板匹配都是手工設計其特征表示,而神經(jīng)網(wǎng)絡則是通過算法自動學習目標的合適特征表示,相比手工特征設計來說其更高效快捷,也無需太多的專業(yè)的特征設計知識,因此其能夠識別不同場景中形狀、大小、紋理等不一的目標,隨著數(shù)據(jù)集的增大,檢測的精度也會進一步提高。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關注

    關注

    163

    文章

    4729

    瀏覽量

    125025
  • 深度學習
    +關注

    關注

    73

    文章

    5591

    瀏覽量

    123913

原文標題:超詳細!一文講透機器視覺常用的 3 種“目標識別”方法

文章出處:【微信號:機器視覺沙龍,微信公眾號:機器視覺沙龍】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    電壓放大器在全導波場圖像目標識別的損傷檢測實驗的應用

    圖像目標識別的智能損傷檢測方法,通過結合超聲導波檢測技術與深度學習算法,系統(tǒng)探究了損傷引起的波場畸變特性及其識別機制。 測試設備:掃描激光多普勒測振儀、函數(shù)發(fā)生器、功率放大器ATA-2021H、壓電換能器、反光膜、計算機數(shù)據(jù)處理
    的頭像 發(fā)表于 12-02 11:37 ?77次閱讀
    電壓放大器在全導波場圖像<b class='flag-5'>目標識別</b>的損傷檢測實驗的應用

    電解電容極性的識別方法及注意事項

    電解電容器是一具有極性的電子元件,正確識別其極性對電路安全與性能至關重要。若極性接反,可能導致電容漏液、發(fā)熱、爆炸甚至損壞整個電路。以下是電解電容極性的識別方法及注意事項: 一、外觀標識
    的頭像 發(fā)表于 11-11 15:37 ?1144次閱讀
    電解電容極性的<b class='flag-5'>識別方法</b>及注意事項

    機器視覺系統(tǒng)中工業(yè)相機的常用術語解讀

    1、機器視覺系統(tǒng)機器視覺系統(tǒng)machinevisionsystem是通過對聲波、電磁輻射等時空模式進行探測及感知,對所獲取的圖像
    的頭像 發(fā)表于 10-31 17:34 ?998次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b>系統(tǒng)中工業(yè)相機的<b class='flag-5'>常用</b>術語解讀

    機器視覺檢測PIN針

    物理損傷)必須進行極其精密的測量與核查。以往依賴人眼的檢測方式存在明顯短板:不僅作業(yè)速度慢、受人員狀態(tài)影響大(易疲勞導致誤判),而且在面對日益嚴苛的微米級精度標準時顯得力不從心。相比之下,基于機器視覺
    發(fā)表于 09-26 15:09

    機器視覺系統(tǒng)工業(yè)相機的成像原理及如何選型

    機器視覺系統(tǒng)是一模擬人類視覺功能,通過光學裝置和非接觸式傳感器獲取圖像數(shù)據(jù),并進行分析和處理,以實現(xiàn)對
    的頭像 發(fā)表于 08-07 14:14 ?1023次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b>系統(tǒng)工業(yè)相機的成像原理及如何選型

    基于凌智視覺識別模塊的基于單目視覺目標物測量裝置

    1.視覺測量整體方案本視覺測量系統(tǒng)采用單目視覺技術實現(xiàn)目標物距離
    的頭像 發(fā)表于 07-31 15:35 ?726次閱讀
    基于凌智<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊的基于單目<b class='flag-5'>視覺</b>的<b class='flag-5'>目標</b>物測量裝置

    基于LockAI視覺識別模塊:手寫數(shù)字識別

    : 卷積神經(jīng)網(wǎng)絡(CNN):最流行的方法之一,能夠自動從圖像中學習特征。適用于復雜背景和不同書寫風格的手寫數(shù)字識別。 支持向量機(SVM):一傳統(tǒng)的機器學習
    發(fā)表于 06-30 16:45

    基于LockAI視覺識別模塊:手寫數(shù)字識別

    手寫數(shù)字識別是一經(jīng)典的模式識別和圖像處理問題,旨在通過計算機自動識別用戶手寫的數(shù)字。本文將教會你如何使用基于RV1106的LockAI視覺
    的頭像 發(fā)表于 06-30 15:44 ?860次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:手寫數(shù)字<b class='flag-5'>識別</b>

    基于LockAI視覺識別模塊:C++目標檢測

    本文檔基于瑞芯微RV1106的LockAI凌智視覺識別模塊,通過C++語言做的目標檢測實驗。本文檔展示了如何使用lockzhiner_vision_module::PaddleDet類進行
    的頭像 發(fā)表于 06-06 13:56 ?609次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:C++<b class='flag-5'>目標</b>檢測

    介紹三種常見的MySQL高可用方案

    方案——MHA(MySQL High Availability Manager)、PXC(Percona XtraDB Cluster) 和 Galera Cluster。我們將從原理、架構、優(yōu)勢和局限性等角度對比三種方案,并探討它們在實際應用中的部署場景和最佳實踐。
    的頭像 發(fā)表于 05-28 17:16 ?1004次閱讀

    基于LockAI視覺識別模塊:C++條碼識別

    條碼識別視覺模塊經(jīng)常使用到的功能之一,經(jīng)常用識別超市的貨物信息。本文我們將演示如何基于瑞芯微RV1106的LockAI視覺
    的頭像 發(fā)表于 05-27 09:32 ?518次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:C++條碼<b class='flag-5'>識別</b>

    精選好文!噪聲系數(shù)測量的三種方法

    本文介紹了測量噪聲系數(shù)的三種方法:增益法、Y系數(shù)法和噪聲系數(shù)測試儀法。這三種方法的比較以表格的形式給出。 在無線通信系統(tǒng)中,噪聲系數(shù)(NF)或者相對應的噪聲因數(shù)(F)定義了噪聲性能和對接
    發(fā)表于 05-07 10:18

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎算法的應用

    人部署,詳細介紹了基于顏色閾值和深度學習的巡線方法。 二維碼識別則廣泛應用于機器人定位與任務觸發(fā),例如AGV(自動導引車)的路徑規(guī)劃。 深度學習在機器
    發(fā)表于 05-03 19:41

    FPGA頻率測量的三種方法

    1、FPGA頻率測量? 頻率測量在電子設計和測量領域中經(jīng)常用到,因此對頻率測量方法的研究在實際工程應用中具有重要意義。 通常的頻率測量方法三種:直接測量法,間接測量法,等精度測量法。
    的頭像 發(fā)表于 01-09 09:37 ?1178次閱讀
    FPGA頻率測量的<b class='flag-5'>三種方法</b>

    示波器的三種觸發(fā)模式

    示波器的觸發(fā)方式不僅影響波形捕捉的時機,還決定了顯示的波形是否穩(wěn)定。 常見的觸發(fā)模式有三種: 單次觸發(fā) (Single)、 正常觸發(fā) (Normal)和 自動觸發(fā) (Auto)。下面將對這三種觸發(fā)
    的頭像 發(fā)表于 01-07 11:04 ?1.3w次閱讀
    示波器的<b class='flag-5'>三種</b>觸發(fā)模式