chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)之關(guān)聯(lián)分析介紹

RG15206629988 ? 來(lái)源:行業(yè)學(xué)習(xí)與研究 ? 2023-03-25 14:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

數(shù)據(jù)挖掘中應(yīng)用較多的技術(shù)是機(jī)器學(xué)習(xí)。機(jī)器學(xué)習(xí)主流算法包括三種:關(guān)聯(lián)分析、分類分析、聚類分析。本文主要介紹關(guān)聯(lián)分析。

一、關(guān)聯(lián)分析概述

關(guān)聯(lián)分析可發(fā)現(xiàn)大量數(shù)據(jù)中隱藏的相關(guān)性(統(tǒng)計(jì)學(xué)的相關(guān)性分析不能直接發(fā)現(xiàn)數(shù)據(jù)中隱藏的相關(guān)性,需先人為猜測(cè)各變量間可能相關(guān),再通過(guò)統(tǒng)計(jì)學(xué)計(jì)算相關(guān)性強(qiáng)弱),進(jìn)而描述事物同時(shí)出現(xiàn)的規(guī)律和模式,被描述出的規(guī)律和模式可應(yīng)用于市場(chǎng)營(yíng)銷、事務(wù)分析等領(lǐng)域。

例如:某超市可通過(guò)關(guān)聯(lián)分析得出消費(fèi)者購(gòu)買牛奶和購(gòu)買面包隱含的相關(guān)性。如果有關(guān)購(gòu)買牛奶和購(gòu)買面包衡量指標(biāo)大于某一閾值,說(shuō)明此二者相關(guān),超市可以通過(guò)將售賣牛奶和面包的貨架靠近或推出牛奶和面包的組合裝促銷。

二、置信度與支持度

置信度與支持度是關(guān)聯(lián)分析的衡量指標(biāo)。

置信度是指包含關(guān)聯(lián)規(guī)則所有特征(個(gè)人理解:特征可被理解為變量,包括自變量和因變量)的數(shù)據(jù)數(shù)量占包含自變量數(shù)據(jù)數(shù)量的比例。置信度高表示關(guān)聯(lián)規(guī)則所表示的自變量與因變量的相關(guān)性高。

支持度是指包含關(guān)聯(lián)規(guī)則的所有特征的數(shù)據(jù)數(shù)量占總數(shù)據(jù)數(shù)量的比例。支持度高表示關(guān)聯(lián)規(guī)則的出現(xiàn)頻率高,該關(guān)聯(lián)規(guī)則的重要性高。如果關(guān)聯(lián)規(guī)則的置信度高,但支持度低,表示該關(guān)聯(lián)規(guī)則出現(xiàn)頻率低,重要性低,利用價(jià)值低。

關(guān)聯(lián)分析需尋找支持度和置信度分別高于預(yù)先設(shè)定的支持度閾值和置信度閾值的關(guān)聯(lián)規(guī)則,該種關(guān)聯(lián)規(guī)則被稱為強(qiáng)關(guān)聯(lián)規(guī)則。不小于支持度閾值的關(guān)聯(lián)規(guī)則被稱為頻繁規(guī)則,不小于支持度閾值的特征集被稱為頻繁項(xiàng)集(項(xiàng)集可被理解為特征集,項(xiàng)、特征的具象化事物可以是商品,個(gè)人理解:頻繁規(guī)則和頻繁項(xiàng)集是一種事物兩個(gè)維度的表述)。

三、Apriori定律

在大數(shù)據(jù)關(guān)聯(lián)分析中,如果采用枚舉的方式找出所有的頻繁項(xiàng)集,則計(jì)算效率較低。因此,關(guān)聯(lián)分析可通過(guò)以下定律,簡(jiǎn)化頻繁項(xiàng)集的確定過(guò)程。

Apriori定律1:頻繁項(xiàng)集的子集也是頻繁項(xiàng)集。如圖一所示,如果{C,D,E}是頻繁項(xiàng)集,意味著{C,D,E}在大數(shù)據(jù)中出現(xiàn)的頻率不小于支持度閾值,那么其子集如{C,D}在大數(shù)據(jù)出現(xiàn)的頻率也一定不小于支持度閾值,即為頻繁項(xiàng)集。

1c18de38-cac8-11ed-bfe3-dac502259ad0.png

圖一,圖片來(lái)源:?jiǎn)袅▎袅ā稊?shù)據(jù)科學(xué)導(dǎo)論》

Apriori定律2:非頻繁項(xiàng)集的超集(個(gè)人理解:某集合的超集是包含該集合的集合)也不是頻繁項(xiàng)集。如圖二所示,如果{A,B}不是頻繁項(xiàng)集,意味著{A,B}在大數(shù)據(jù)中出現(xiàn)的頻率小于支持度閾值,那么其超集如{A,B,C}在大數(shù)據(jù)出現(xiàn)的頻率也一定小于支持度閾值,即不是頻繁項(xiàng)集。

1c37974c-cac8-11ed-bfe3-dac502259ad0.png

圖二,圖片來(lái)源:?jiǎn)袅▎袅ā稊?shù)據(jù)科學(xué)導(dǎo)論》

以上兩定律在Apriori算法中被應(yīng)用,Apriori算法是一種關(guān)聯(lián)分析算法。

四、關(guān)聯(lián)規(guī)則學(xué)習(xí)步驟

(1)找出所有的頻繁項(xiàng)集。

(2)根據(jù)頻繁項(xiàng)集生成頻繁規(guī)則。

(3)根據(jù)置信度指標(biāo)進(jìn)一步篩選頻繁規(guī)則。

五、確定候選項(xiàng)集的注意事項(xiàng)

在選擇候選項(xiàng)集(個(gè)人理解:候選項(xiàng)集指未進(jìn)行置信度篩選的頻繁項(xiàng)集)需注意:

(1)應(yīng)當(dāng)避免產(chǎn)生太多不必要的候選項(xiàng)集。

(2)候選項(xiàng)集中不遺漏頻繁項(xiàng)集。

(3)不產(chǎn)生重復(fù)候選項(xiàng)集。





審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8502

    瀏覽量

    134587
  • Apriori算法
    +關(guān)注

    關(guān)注

    0

    文章

    14

    瀏覽量

    10652

原文標(biāo)題:大數(shù)據(jù)相關(guān)介紹(24)——機(jī)器學(xué)習(xí)之關(guān)聯(lián)分析

文章出處:【微信號(hào):行業(yè)學(xué)習(xí)與研究,微信公眾號(hào):行業(yè)學(xué)習(xí)與研究】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    設(shè)備和智能傳感器)上,這些設(shè)備通常具有有限的計(jì)算能力、存儲(chǔ)空間和功耗。本文將您介紹嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性,以及常見(jiàn)的機(jī)器學(xué)習(xí)開(kāi)發(fā)軟件與開(kāi)發(fā)
    的頭像 發(fā)表于 01-25 17:05 ?658次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+兩本互為支持的書(shū)

    最近在閱讀《具身智能機(jī)器人系統(tǒng)》這本書(shū)的同時(shí),還讀了 《計(jì)算機(jī)視覺(jué)PyTorch數(shù)字圖像處理》一書(shū),這兩本書(shū)完全可以視為是互為依托的姊妹篇?!队?jì)算機(jī)視覺(jué)PyTorch數(shù)字圖像處理》是介紹
    發(fā)表于 01-01 15:50

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多
    的頭像 發(fā)表于 12-30 09:16 ?1183次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?452次閱讀

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得具身智能機(jī)器人與大模型

    醫(yī)療領(lǐng)域,手術(shù)輔助機(jī)器人需要毫米級(jí)的精確控制,書(shū)中有介紹基于視覺(jué)伺服的實(shí)時(shí)控制算法,以及如何利用大模型優(yōu)化手術(shù)路徑規(guī)劃。工業(yè)場(chǎng)景中,協(xié)作機(jī)器人面臨的主要挑戰(zhàn)是快速適應(yīng)新工藝流程。具身智能通過(guò)在線
    發(fā)表于 12-24 15:03

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    在探討ZETA在機(jī)器學(xué)習(xí)中的應(yīng)用以及ZETA的優(yōu)缺點(diǎn)時(shí),需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應(yīng)用。以下是根據(jù)不同領(lǐng)域的ZETA進(jìn)行的分析: 一、ZETA在機(jī)器
    的頭像 發(fā)表于 12-20 09:11 ?1121次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)
    的頭像 發(fā)表于 11-16 01:07 ?963次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?1212次閱讀

    eda在機(jī)器學(xué)習(xí)中的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過(guò)程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:42 ?890次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù)。 特征工程(Feature Engineering)是將數(shù)據(jù)轉(zhuǎn)換為更好地表示潛在問(wèn)題的特征,從而提高機(jī)器學(xué)習(xí)
    發(fā)表于 08-17 21:12

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    本人有些機(jī)器學(xué)習(xí)的基礎(chǔ),理解起來(lái)一點(diǎn)也不輕松,加油。 作者首先說(shuō)明了時(shí)間序列的信息提取是時(shí)間序列分析的一個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析
    發(fā)表于 08-14 18:00

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 鳥(niǎo)瞰這本書(shū)

    清晰,從時(shí)間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時(shí)間序列預(yù)測(cè)中的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過(guò)精心設(shè)計(jì),對(duì)理論知識(shí)進(jìn)行了詳細(xì)的闡述,對(duì)實(shí)際案例進(jìn)行了生動(dòng)的展示,使讀者在理論與實(shí)踐
    發(fā)表于 08-12 11:28

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    這本書(shū)以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了
    發(fā)表于 08-12 11:21

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    。 可以探索現(xiàn)象發(fā)展變化的規(guī)律,對(duì)某些社會(huì)經(jīng)濟(jì)現(xiàn)象進(jìn)行預(yù)測(cè)。 利用時(shí)間序列可以在不同地區(qū)或國(guó)家之間進(jìn)行對(duì)比分析,這也是統(tǒng)計(jì)分析的重要方法之一。 而《時(shí)間序列與機(jī)器學(xué)習(xí)》一書(shū)的后幾章分別
    發(fā)表于 08-11 17:55

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書(shū)概覽與時(shí)間序列概述

    他領(lǐng)域(如自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)等)的關(guān)聯(lián)。 ●第2章“時(shí)間序列的信息提取”:介紹特征工程的核心概念及其在時(shí)間序列分析中的廣用,比如對(duì)原始數(shù)據(jù)進(jìn)行歸一化、缺失值填充等轉(zhuǎn)換;以及如何通過(guò)特征工程從時(shí)間
    發(fā)表于 08-07 23:03