chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法入門(mén) 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-17 16:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)算法入門(mén) 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比

機(jī)器學(xué)習(xí)算法入門(mén)、介紹和對(duì)比

隨著機(jī)器學(xué)習(xí)的普及,越來(lái)越多的人想要了解和學(xué)習(xí)機(jī)器學(xué)習(xí)算法。在這篇文章中,我們將會(huì)簡(jiǎn)單介紹機(jī)器學(xué)習(xí)算法的基本概念,討論一些主要的機(jī)器學(xué)習(xí)算法,以及比較它們之間的優(yōu)缺點(diǎn),以便于您選擇適合的算法。

一、機(jī)器學(xué)習(xí)算法的基本概念

機(jī)器學(xué)習(xí)是一種人工智能的技術(shù),它允許計(jì)算機(jī)從歷史數(shù)據(jù)中學(xué)習(xí)模式,以便于更好地預(yù)測(cè)未來(lái)的數(shù)據(jù)。機(jī)器學(xué)習(xí)算法通常分為三種類(lèi)型:

1. 監(jiān)督學(xué)習(xí)算法:這類(lèi)算法依賴于有標(biāo)簽的數(shù)據(jù),也就是說(shuō)數(shù)據(jù)集中包含有正確的答案。在監(jiān)督學(xué)習(xí)中,我們會(huì)訓(xùn)練一個(gè)模型,然后使用測(cè)試數(shù)據(jù)驗(yàn)證這個(gè)模型的準(zhǔn)確性。

2. 無(wú)監(jiān)督學(xué)習(xí)算法:這類(lèi)算法使用沒(méi)有標(biāo)簽的數(shù)據(jù),也就是說(shuō)數(shù)據(jù)集中不包含正確答案。無(wú)監(jiān)督學(xué)習(xí)的目的是尋找數(shù)據(jù)之間的隱藏結(jié)構(gòu),例如聚類(lèi)。

3. 強(qiáng)化學(xué)習(xí)算法:這類(lèi)算法根據(jù)與環(huán)境交互的結(jié)果學(xué)習(xí)。強(qiáng)化學(xué)習(xí)用于學(xué)習(xí)一種行為模式,以便讓機(jī)器人、智能體等能夠在動(dòng)態(tài)環(huán)境中自主決策。

二、機(jī)器學(xué)習(xí)算法介紹

接下來(lái),我們將介紹一些常用的機(jī)器學(xué)習(xí)算法。

1. 線性回歸算法

線性回歸是一種監(jiān)督學(xué)習(xí)算法,用于建立一個(gè)輸入變量與輸出變量之間的線性關(guān)系。例如,我們可以使用線性回歸算法來(lái)預(yù)測(cè)一個(gè)房子的價(jià)格。

2. 邏輯回歸算法

邏輯回歸也是一種監(jiān)督學(xué)習(xí)算法,用于分類(lèi)問(wèn)題。邏輯回歸算法基于線性回歸,通過(guò)一個(gè) sigmoid 函數(shù)將其輸出映射到 0 或 1 之間。

3. 決策樹(shù)算法

決策樹(shù)是一種監(jiān)督學(xué)習(xí)算法,它可以自動(dòng)地構(gòu)建一個(gè)樹(shù)形結(jié)構(gòu)來(lái)進(jìn)行決策。決策樹(shù)算法對(duì)于處理多分類(lèi)問(wèn)題和缺失數(shù)據(jù)較為有效。

4. 隨機(jī)森林算法

隨機(jī)森林算法是一種基于決策樹(shù)的監(jiān)督學(xué)習(xí)算法。它通過(guò)對(duì)輸入數(shù)據(jù)進(jìn)行 Bootstrap 和特征的隨機(jī)選擇對(duì)決策樹(shù)進(jìn)行改進(jìn),以達(dá)到更好的泛化能力。

5. KNN 算法

KNN 是一種無(wú)監(jiān)督學(xué)習(xí)算法,它通過(guò)比較數(shù)據(jù)之間的相似程度來(lái)進(jìn)行分類(lèi)。它的核心思想是將數(shù)據(jù)分成多個(gè)最相似的子集,然后將新數(shù)據(jù)分類(lèi)到這些子集中。

三、機(jī)器學(xué)習(xí)算法對(duì)比

在實(shí)際應(yīng)用中,我們需要根據(jù)數(shù)據(jù)類(lèi)型、算法的復(fù)雜度以及我們的需求來(lái)選擇合適的機(jī)器學(xué)習(xí)算法。

在特征較復(fù)雜的數(shù)據(jù)集上,邏輯回歸和決策樹(shù)達(dá)到的精度會(huì)較低,這時(shí)我們可以考慮使用 SVM、隨機(jī)森林等模型。

在處理大規(guī)模數(shù)據(jù)集時(shí),KNN 和決策樹(shù)算法需要較長(zhǎng)的時(shí)間進(jìn)行訓(xùn)練,而且占用的內(nèi)存較多。這時(shí)我們可以考慮使用隨機(jī)森林或者神經(jīng)網(wǎng)絡(luò)等算法。

總之,在選擇算法時(shí),我們需要考慮多個(gè)因素,包括數(shù)據(jù)集、算法的目的、復(fù)雜度以及實(shí)時(shí)性等。

綜上所述,機(jī)器學(xué)習(xí)算法是一種強(qiáng)大的工具,可以用于預(yù)測(cè)、分類(lèi)和發(fā)現(xiàn)隱藏的模式。在學(xué)習(xí)機(jī)器學(xué)習(xí)算法時(shí),需要對(duì)不同算法的表現(xiàn)、局限性和復(fù)雜度有一定的了解,并選擇最適合您需求的算法。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    量子機(jī)器學(xué)習(xí)入門(mén):三種數(shù)據(jù)編碼方法對(duì)比與應(yīng)用

    在傳統(tǒng)機(jī)器學(xué)習(xí)中數(shù)據(jù)編碼確實(shí)相對(duì)直觀:獨(dú)熱編碼處理類(lèi)別變量,標(biāo)準(zhǔn)化調(diào)整數(shù)值范圍,然后直接輸入模型訓(xùn)練。整個(gè)過(guò)程更像是數(shù)據(jù)清洗,而非核心算法組件。量子機(jī)器
    的頭像 發(fā)表于 09-15 10:27 ?450次閱讀
    量子<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>入門(mén)</b>:三種數(shù)據(jù)編碼方法<b class='flag-5'>對(duì)比</b>與應(yīng)用

    PID控制算法學(xué)習(xí)筆記資料

    用于新手學(xué)習(xí)PID控制算法。
    發(fā)表于 08-12 16:22 ?7次下載

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    ,越來(lái)越多地被應(yīng)用于機(jī)器學(xué)習(xí)任務(wù)中。本文將探討 FPGA 在機(jī)器學(xué)習(xí)中的應(yīng)用,特別是在加速神經(jīng)網(wǎng)絡(luò)推理、優(yōu)化算法和提升處理效率方面的優(yōu)勢(shì)。
    的頭像 發(fā)表于 07-16 15:34 ?2603次閱讀

    【嘉楠堪智K230開(kāi)發(fā)板試用體驗(yàn)】K230機(jī)器視覺(jué)相關(guān)功能體驗(yàn)

    K230開(kāi)發(fā)板攝像頭及AI功能測(cè)評(píng) 攝像頭作為機(jī)器視覺(jué)應(yīng)用的基礎(chǔ),能夠給機(jī)器學(xué)習(xí)模型提供輸入,提供輸入的質(zhì)量直接影響機(jī)器學(xué)習(xí)模型的效果。 K
    發(fā)表于 07-08 17:25

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    : 一、機(jī)器人視覺(jué):從理論到實(shí)踐 第7章詳細(xì)介紹了ROS2在機(jī)器視覺(jué)領(lǐng)域的應(yīng)用,涵蓋了相機(jī)標(biāo)定、OpenCV集成、視覺(jué)巡線、二維碼識(shí)別以及深度學(xué)習(xí)目標(biāo)檢測(cè)等內(nèi)容。通過(guò)
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】機(jī)器入門(mén)的引路書(shū)

    的限制和調(diào)控) 本書(shū)還有很多前沿技術(shù)項(xiàng)目的擴(kuò)展 比如神經(jīng)網(wǎng)絡(luò)識(shí)別例程,機(jī)器學(xué)習(xí)圖像識(shí)別的原理,yolo圖像追蹤的原理 機(jī)器學(xué)習(xí)訓(xùn)練三大點(diǎn): 先準(zhǔn)備一個(gè)基本的模型結(jié)構(gòu) 和訓(xùn)練時(shí)的反饋函
    發(fā)表于 04-30 01:05

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹(shù)和神經(jīng)網(wǎng)絡(luò)這些常見(jiàn)的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的算法,它們能夠
    的頭像 發(fā)表于 04-02 14:10 ?896次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>模型

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    機(jī)器學(xué)習(xí)算法,解決傳感器數(shù)據(jù)采集難題! 1. nRF54系列支持OTA嗎? 答:支持!nRF54L系列基于Zephyr的MCUBOOT和SMP DFU庫(kù),支持BLE和UART等多種OTA方式
    發(fā)表于 04-01 00:00

    請(qǐng)問(wèn)STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)
    的頭像 發(fā)表于 02-13 09:39 ?603次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    設(shè)備和智能傳感器)上,這些設(shè)備通常具有有限的計(jì)算能力、存儲(chǔ)空間和功耗。本文將您介紹嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性,以及常見(jiàn)的機(jī)器學(xué)習(xí)開(kāi)發(fā)軟件與開(kāi)發(fā)
    的頭像 發(fā)表于 01-25 17:05 ?1185次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識(shí),需要搭建一個(gè)學(xué)習(xí)環(huán)境,所以就在最近購(gòu)買(mǎi)的華為云 Flexus X 實(shí)例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?852次閱讀
    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多
    的頭像 發(fā)表于 12-30 09:16 ?1954次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】1.全書(shū)概覽與第一章學(xué)習(xí)

    了解具身智能機(jī)器人相關(guān)的知識(shí),我感到十分榮幸和幸運(yùn)。 全書(shū)簡(jiǎn)介 本書(shū)以循序漸進(jìn)的方式展開(kāi),通過(guò)對(duì)具身智能機(jī)器人技術(shù)的全方位解析,幫助讀者系統(tǒng)化地學(xué)習(xí)這一領(lǐng)域的核心知識(shí)。 首先在第一部分,介紹
    發(fā)表于 12-27 14:50

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?681次閱讀