chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)和遷移學(xué)習(xí)應(yīng)用,識別麥田倒伏面積

juying ? 來源:juying ? 作者:juying ? 2023-12-12 16:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在小麥揚花灌漿期,土壤中的養(yǎng)分供應(yīng)非常重要。因此,及時施肥是保證小麥生長的關(guān)鍵。一般來說,施肥時間應(yīng)該在小麥揚花開始期時進行。一般選擇氮、磷、鉀等多種元素的肥料進行施用,以保證小麥的健康生長。

小麥揚花灌漿期對水分的需求量非常大,但是過量的灌溉也容易導(dǎo)致小麥發(fā)生根腐病或者其他水害。因此,在小麥揚花灌漿期,適當控制水分非常重要。一般來說,在小麥揚花灌漿期,應(yīng)該根據(jù)實際情況,靈活掌握灌溉的時間和量,以保證小麥的生長和發(fā)育。

利用低空無人機技術(shù),并結(jié)合深度學(xué)習(xí)語義分割模型精準提取作物倒伏區(qū)域是一種高效的倒伏災(zāi)害監(jiān)測手段。在實際應(yīng)用中,受田間各種客觀條件(不同無人機飛行高度低于120m、多個研究區(qū)、關(guān)鍵生育期不同天氣狀況等)限制,無人機獲取的圖像數(shù)量仍偏少,難以滿足高精度深度學(xué)習(xí)模型訓(xùn)練的要求。

安徽大學(xué)農(nóng)業(yè)生態(tài)大數(shù)據(jù)分析與應(yīng)用技術(shù)國家地方聯(lián)合工程研究中心與西北農(nóng)林科技大學(xué)機械與電子工程學(xué)院、宿州學(xué)院信息工程學(xué)院,組成了胡根生教授團隊展開了研究,旨在探索一種在作物生育期和研究區(qū)有限的情況下精準提取倒伏面積的方法。

以健康/倒伏小麥為研究對象,在其灌漿期和成熟期開展麥田圖像采集工作。設(shè)置2個飛行高度(40和80m),采集并拼接獲取2019、2020、2021和2023年份3個研究區(qū)的數(shù)字正射影像圖;在Swin-Transformer深度學(xué)習(xí)語義分割框架基礎(chǔ)上,分別使用40m訓(xùn)練集單獨訓(xùn)練、40和80m訓(xùn)練集混合訓(xùn)練、40m訓(xùn)練集預(yù)訓(xùn)練80m訓(xùn)練集遷移學(xué)習(xí)等3種訓(xùn)練方法,獲得對照模型、混合訓(xùn)練模型和遷移學(xué)習(xí)模型;采用對比實驗比較上述3種模型分割80m高度預(yù)測集圖像的精度并評估模型性能。

遷移學(xué)習(xí)模型倒伏面積提取精度最高,交并比、正確率、精確率、召回率和F1-Score共5個指標平均數(shù)分別為85.37%、94.98%、91.30%、92.52%和91.84%,高于對照組模型1.08%~3.19%,平均加權(quán)幀率達到738.35fps/m2,高于40m圖像183.12fps/m2。

利用低飛行高度(40m)預(yù)訓(xùn)練語義分割模型,在較高飛行高度(80m)空圖像做遷移學(xué)習(xí)的方法提取倒伏小麥面積是可行的,這為解決空域飛行高度限制下,較少80m及以上圖像數(shù)據(jù)集無法滿足語義分割模型訓(xùn)練的要求的問題,提供了一種有效的方法。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 無人機
    +關(guān)注

    關(guān)注

    234

    文章

    11146

    瀏覽量

    193442
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5591

    瀏覽量

    123926
  • 遷移學(xué)習(xí)
    +關(guān)注

    關(guān)注

    0

    文章

    74

    瀏覽量

    5838
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何深度學(xué)習(xí)機器視覺的應(yīng)用場景

    檢測應(yīng)用 微細缺陷識別:檢測肉眼難以發(fā)現(xiàn)的微小缺陷和異常 紋理分析:對材料表面紋理進行智能分析和缺陷識別 3D表面重建:通過深度學(xué)習(xí)進行高精度3D建模和檢測 電子行業(yè)應(yīng)用 PCB板復(fù)雜
    的頭像 發(fā)表于 11-27 10:19 ?63次閱讀

    如何在機器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標檢測可定位已訓(xùn)練的目標類別,并通過矩形框(邊界框)對其進行標識。 在討論人工智能(AI)或深度學(xué)習(xí)時,經(jīng)常會出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標注”等術(shù)語。這些概
    的頭像 發(fā)表于 09-10 17:38 ?713次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對工業(yè)物聯(lián)網(wǎng)有哪些幫助

    深度學(xué)習(xí)作為人工智能的核心分支,通過模擬人腦神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu),能夠自動從海量工業(yè)數(shù)據(jù)中提取復(fù)雜特征,為工業(yè)物聯(lián)網(wǎng)(IIoT)提供了從數(shù)據(jù)感知到智能決策的全鏈路升級能力。以下從技術(shù)賦能、場景突破
    的頭像 發(fā)表于 08-20 14:56 ?775次閱讀

    自動駕駛中Transformer大模型會取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3932次閱讀
    自動駕駛中Transformer大模型會取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    深度學(xué)習(xí)遇上嵌入式資源困境,特征空間如何破局?

    近年來,隨著人工智能(AI)技術(shù)的迅猛發(fā)展,深度學(xué)習(xí)(Deep Learning)成為最熱門的研究領(lǐng)域之一。在語音識別、圖像識別、自然語言處理等領(lǐng)域,
    發(fā)表于 07-14 14:50 ?1121次閱讀
    當<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>遇上嵌入式資源困境,特征空間如何破局?

    深度學(xué)習(xí)賦能:正面吊車載箱號識別系統(tǒng)的核心技術(shù)

    在現(xiàn)代物流與智慧港口建設(shè)中,集裝箱的高效精準識別是提升作業(yè)效率的關(guān)鍵環(huán)節(jié)?;贠CR+AI深度學(xué)習(xí)技術(shù)的正面吊車載箱號識別系統(tǒng),憑借99%以上的識別
    的頭像 發(fā)表于 05-07 10:10 ?437次閱讀

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實現(xiàn)機器學(xué)習(xí),網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用
    的頭像 發(fā)表于 04-02 18:21 ?1294次閱讀

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?978次閱讀
    用樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>?TensorFlow啟動!

    廠家芯資訊|WTK6900系列語音識別芯片自學(xué)習(xí)功能深度答疑

    在智能硬件全面擁抱語音交互的時代,廣州唯創(chuàng)電子WTK6900系列芯片憑借其獨特的離線自學(xué)習(xí)能力,已成為智能家居、工業(yè)控制等領(lǐng)域的核心交互模塊。本文針對實際應(yīng)用中的高頻問題,深度解析故障排除方法與優(yōu)化
    的頭像 發(fā)表于 03-20 09:13 ?658次閱讀
    廠家芯資訊|WTK6900系列語音<b class='flag-5'>識別</b>芯片自<b class='flag-5'>學(xué)習(xí)</b>功能<b class='flag-5'>深度</b>答疑

    芯資訊|WTK6900系列語音識別芯片IC自學(xué)習(xí)功能解析

    在人工智能與物聯(lián)網(wǎng)技術(shù)深度融合的今天,離線語音識別技術(shù)憑借其隱私安全、即時響應(yīng)等優(yōu)勢,正在智能家居、工業(yè)控制等領(lǐng)域快速普及。廣州唯創(chuàng)電子推出的WTK6900系列語音識別芯片,憑借其創(chuàng)新的離線命令詞
    的頭像 發(fā)表于 03-20 08:52 ?759次閱讀
    芯資訊|WTK6900系列語音<b class='flag-5'>識別</b>芯片IC自<b class='flag-5'>學(xué)習(xí)</b>功能解析

    如何排除深度學(xué)習(xí)工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度學(xué)習(xí)
    的頭像 發(fā)表于 02-19 15:49 ?730次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?828次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?1364次閱讀