chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Transformer 能代替圖神經(jīng)網(wǎng)絡(luò)嗎?

穎脈Imgtec ? 2024-07-02 08:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

當(dāng)Transformer模型發(fā)布時(shí),它徹底革新了機(jī)器翻譯領(lǐng)域。雖然最初是為特定任務(wù)設(shè)計(jì)的,但這種革命性的架構(gòu)顯示出它可以輕松適應(yīng)不同的任務(wù)。隨后成為了Transformer一個(gè)標(biāo)準(zhǔn),甚至用于它最初設(shè)計(jì)之外的數(shù)據(jù)(如圖像和其他序列數(shù)據(jù))。

然后人們也開(kāi)始優(yōu)化和尋找替代方案,主要是為了減少計(jì)算成本(自注意力機(jī)制的二次方成本)。關(guān)于哪種架構(gòu)在計(jì)算成本方面更優(yōu)的討論一直在進(jìn)行,但是對(duì)于Transformer來(lái)說(shuō),它的成功之處在于模型能夠展示出強(qiáng)大的推理能力。


如何分析神經(jīng)網(wǎng)絡(luò)的推理能力?

最常用的方法之一是研究利用架構(gòu)內(nèi)部表示能執(zhí)行哪些算法。有一個(gè)完整的領(lǐng)域致力于這項(xiàng)任務(wù):Neural algorithmic reasoning。Transformer是否能進(jìn)行泛化,或者通過(guò)擴(kuò)展是否能解決一些問(wèn)題,這些問(wèn)題仍然懸而未決,并且這方面的研究也十分活躍。有些人認(rèn)為T(mén)ransformer具有普適推理能力,而其他人認(rèn)為它是引領(lǐng)我們走向人工通用智能的架構(gòu)(假設(shè)我們能夠足夠擴(kuò)展它),但是目前看Transformer能夠在不同的領(lǐng)域,NLP,時(shí)間序列,甚至CV中取得良好的成績(jī)但是測(cè)試其極限也非常重要。我們不僅需要測(cè)試它的極限,還需要與其他架構(gòu)進(jìn)行比較,并在未來(lái)建立基準(zhǔn)。在最近的一項(xiàng)研究中,研究人員決定深入研究一個(gè)特定的領(lǐng)域:圖神經(jīng)網(wǎng)絡(luò)。今天介紹的這篇論文叫“Understanding Transformer Reasoning Capabilities via Graph Algorithms”e4b8d6f4-3809-11ef-a655-92fbcf53809c.png

這可能聽(tīng)起來(lái)有些奇怪,但近來(lái)Transformer(以及大型語(yǔ)言模型)與圖(Graphs)之間的關(guān)系越來(lái)越密切。首先,自注意力可以被視為一種圖的形式。其次,圖(尤其是知識(shí)圖譜)可以用來(lái)擴(kuò)展Transformer。第三,圖是復(fù)雜推理的理想抽象。思維鏈條和其他技術(shù)也可以被視為圖的一種抽象。另外許多圖問(wèn)題可以通過(guò)簡(jiǎn)單的架構(gòu)解決,而其他問(wèn)題則需要復(fù)雜的推理和先進(jìn)的圖神經(jīng)網(wǎng)絡(luò)(GNNs)。

圖計(jì)算已經(jīng)成為過(guò)去幾十年計(jì)算和人工智能中幾個(gè)成功設(shè)計(jì)的基礎(chǔ)之一,例如用于蛋白質(zhì)預(yù)測(cè)的AlphaFold。許多推理任務(wù)可以表達(dá)為關(guān)于圖的推理(這就是為什么像Tree of Thoughts或Graph of Thoughts這樣的技術(shù)顯示出成功)。所以這似乎是測(cè)試Transformer能力的最佳選擇。盡管有不同的理論前提,但是進(jìn)行嚴(yán)格分析并不容易:圖推理任務(wù)可以被歸類(lèi)到已知的計(jì)算類(lèi)別中。但是當(dāng)我們想要評(píng)估一個(gè)神經(jīng)網(wǎng)絡(luò)解決這些任務(wù)的能力時(shí),情況就不同了。在Transformer的情況下,我們也感興趣的不僅僅是固定深度的情況,還有通過(guò)改變層數(shù)從而學(xué)習(xí)更簡(jiǎn)單或更復(fù)雜的表征時(shí)的變化。并且Transformer也可以在寬度上增長(zhǎng),這在考慮到對(duì)上下文長(zhǎng)度的重新關(guān)注時(shí)尤其相關(guān)。作者總結(jié)了三類(lèi)任務(wù),它們的難度逐步增加,只能通過(guò)越來(lái)越復(fù)雜的模型來(lái)解決:1. 檢索任務(wù)。節(jié)點(diǎn)計(jì)數(shù)、邊計(jì)數(shù)、邊存在檢查和節(jié)點(diǎn)度數(shù)是只需要一次查找的任務(wù),因此只需要一個(gè)Transformer層和一個(gè)小型嵌入。2. 可并行化任務(wù)。連通性、連接節(jié)點(diǎn)和循環(huán)檢查(以及更復(fù)雜的任務(wù)如二分性和平面性)可以用對(duì)數(shù)深度的Transformer解決。3. 搜索任務(wù)。最短路徑和其他需要更多推理的任務(wù)需要模型的擴(kuò)展。

e53d2cd8-3809-11ef-a655-92fbcf53809c.jpg

論文中進(jìn)行了幾項(xiàng)理論分析,展示了Transformer如何解決這些任務(wù)以及解決這些任務(wù)所需的維度要求。另一個(gè)有趣的點(diǎn)是,作者還分析了“pause tokens”的影響。


結(jié)果在對(duì)Transformer的推理能力進(jìn)行了實(shí)證分析后。他們選擇使用從頭開(kāi)始訓(xùn)練的模型(最多60M參數(shù)),對(duì)預(yù)訓(xùn)練的Transformer(T5,帶11B參數(shù))進(jìn)行微調(diào),測(cè)試提示技術(shù),并將其與圖神經(jīng)網(wǎng)絡(luò)(GNNs)進(jìn)行比較。使用GraphQA基準(zhǔn)任務(wù)進(jìn)行了實(shí)驗(yàn)。

e542391c-3809-11ef-a655-92fbcf53809c.jpg

圖推理算法可以分為局部和全局兩種。前者在局部聚合信息(節(jié)點(diǎn)及其鄰居),而后者模擬節(jié)點(diǎn)之間可能是長(zhǎng)距離的全局連接。論文主要專(zhuān)注于全局任務(wù),如評(píng)估連通性或計(jì)算最短路徑(這些任務(wù)需要分析圖的全局結(jié)構(gòu))。在少數(shù)示例情況下,圖神經(jīng)網(wǎng)絡(luò)(GNNs)在這些任務(wù)中更為高效,但通過(guò)增加示例數(shù)量,Transformer的表現(xiàn)更好(Transformer仍然具有弱歸納偏見(jiàn),需要許多示例才能最好地學(xué)習(xí))。對(duì)Transformer進(jìn)行微調(diào)也對(duì)預(yù)訓(xùn)練的Transformer有積極影響。

e5464e76-3809-11ef-a655-92fbcf53809c.jpg

以前的研究已經(jīng)表明,對(duì)于圖神經(jīng)網(wǎng)絡(luò)(GNN)來(lái)說(shuō),以參數(shù)效率的方式解決連通性存在限制。微調(diào)后的模型似乎對(duì)連通性和最短路徑都更有效。雖然Transformer在解決全局任務(wù)方面更有效,但GNN在分析局部推理的任務(wù)中似乎更為高效:

表明GNN對(duì)于學(xué)習(xí)可以通過(guò)專(zhuān)門(mén)關(guān)注局部啟發(fā)式解決的圖推理任務(wù)具有有益的歸納偏見(jiàn)。(論文原文翻譯)

在GNN中的消息傳遞框架便于節(jié)點(diǎn)與其鄰居之間的信息傳遞(每增加一層相當(dāng)于圖中的一次跳躍)。相比之下,注意力機(jī)制計(jì)算每對(duì)標(biāo)記之間的關(guān)系,因此它通過(guò)全局任務(wù)來(lái)促進(jìn),但在數(shù)據(jù)量較低的情況下,識(shí)別重要的局部關(guān)系更為困難。

e549f4c2-3809-11ef-a655-92fbcf53809c.jpg

作者還測(cè)試了使用大型語(yǔ)言模型(LLM)的情況,對(duì)表現(xiàn)優(yōu)異的Transformer進(jìn)行微調(diào)優(yōu)于使用提示方法。盡管在訓(xùn)練過(guò)程中,LLM會(huì)在語(yǔ)料庫(kù)中看到圖數(shù)據(jù),因此并不是完全沒(méi)有接觸過(guò)此類(lèi)數(shù)據(jù)。但這表明在特定任務(wù)的情況下專(zhuān)業(yè)的小模型還是要更好,并且微調(diào)要比直接使用提示的方式好。

e555723e-3809-11ef-a655-92fbcf53809c.jpg

總結(jié)這篇論文詳細(xì)展示了Transformer在圖推理方面的能力,并且涵蓋了不同的參數(shù)縮放模式。許多問(wèn)題可以被重新表述為圖問(wèn)題,所以這篇論文還是值得閱讀。并且論文還顯示,一些能力的展示需要一定的網(wǎng)絡(luò)深度,以便讓Transformer解決問(wèn)題。例如在需要全局推理的任務(wù)中,Transformer超過(guò)了圖神經(jīng)網(wǎng)絡(luò)(GNN),這得益于自注意力機(jī)制,它允許長(zhǎng)距離依賴(lài)關(guān)系被高效評(píng)估。這些發(fā)現(xiàn)為使用Transformer處理具有復(fù)雜全局依賴(lài)性的圖推理任務(wù)提供了理論和實(shí)證支持。

論文地址:https://arxiv.org/abs/2405.18512
作者:Salvatore Raieli

本文來(lái)源:DeepHub IMBA

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4829

    瀏覽量

    106828
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49757

    瀏覽量

    261686
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3649

    瀏覽量

    51719
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    Transformer如何讓自動(dòng)駕駛變得更聰明?

    ]自動(dòng)駕駛中常提的Transformer本質(zhì)上是一種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),最早在自然語(yǔ)言處理里火起來(lái)。與卷積神經(jīng)網(wǎng)絡(luò)(CNN)或循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)不同,
    的頭像 發(fā)表于 11-19 18:17 ?1937次閱讀

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    NMSIS NN 軟件庫(kù)是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫(kù)分為多個(gè)功能,每個(gè)功能涵蓋特定類(lèi)別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開(kāi)發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個(gè)手寫(xiě)數(shù)字識(shí)別的神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線(xiàn)蟲(chóng)的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?711次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對(duì)整個(gè)系統(tǒng)性能和效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3097次閱讀

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過(guò)濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無(wú)法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過(guò)濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號(hào),不進(jìn)行任何計(jì)算
    的頭像 發(fā)表于 02-12 16:41 ?1263次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1339次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1611次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1296次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1363次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個(gè)核心過(guò)程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1544次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線(xiàn)性問(wèn)題。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中應(yīng)用的分析: 一、BP神經(jīng)網(wǎng)絡(luò)基本原理 BP
    的頭像 發(fā)表于 02-12 15:12 ?1198次閱讀

    深度學(xué)習(xí)入門(mén):簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,神經(jīng)元之間通過(guò)
    的頭像 發(fā)表于 01-23 13:52 ?856次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2271次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法