chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

Transformer 能代替圖神經(jīng)網(wǎng)絡嗎?

穎脈Imgtec ? 2024-07-02 08:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

當Transformer模型發(fā)布時,它徹底革新了機器翻譯領域。雖然最初是為特定任務設計的,但這種革命性的架構(gòu)顯示出它可以輕松適應不同的任務。隨后成為了Transformer一個標準,甚至用于它最初設計之外的數(shù)據(jù)(如圖像和其他序列數(shù)據(jù))。

然后人們也開始優(yōu)化和尋找替代方案,主要是為了減少計算成本(自注意力機制的二次方成本)。關于哪種架構(gòu)在計算成本方面更優(yōu)的討論一直在進行,但是對于Transformer來說,它的成功之處在于模型能夠展示出強大的推理能力。


如何分析神經(jīng)網(wǎng)絡的推理能力?

最常用的方法之一是研究利用架構(gòu)內(nèi)部表示能執(zhí)行哪些算法。有一個完整的領域致力于這項任務:Neural algorithmic reasoning。Transformer是否能進行泛化,或者通過擴展是否能解決一些問題,這些問題仍然懸而未決,并且這方面的研究也十分活躍。有些人認為Transformer具有普適推理能力,而其他人認為它是引領我們走向人工通用智能的架構(gòu)(假設我們能夠足夠擴展它),但是目前看Transformer能夠在不同的領域,NLP,時間序列,甚至CV中取得良好的成績但是測試其極限也非常重要。我們不僅需要測試它的極限,還需要與其他架構(gòu)進行比較,并在未來建立基準。在最近的一項研究中,研究人員決定深入研究一個特定的領域:圖神經(jīng)網(wǎng)絡。今天介紹的這篇論文叫“Understanding Transformer Reasoning Capabilities via Graph Algorithms”e4b8d6f4-3809-11ef-a655-92fbcf53809c.png

這可能聽起來有些奇怪,但近來Transformer(以及大型語言模型)與圖(Graphs)之間的關系越來越密切。首先,自注意力可以被視為一種圖的形式。其次,圖(尤其是知識圖譜)可以用來擴展Transformer。第三,圖是復雜推理的理想抽象。思維鏈條和其他技術(shù)也可以被視為圖的一種抽象。另外許多圖問題可以通過簡單的架構(gòu)解決,而其他問題則需要復雜的推理和先進的圖神經(jīng)網(wǎng)絡(GNNs)。

圖計算已經(jīng)成為過去幾十年計算和人工智能中幾個成功設計的基礎之一,例如用于蛋白質(zhì)預測的AlphaFold。許多推理任務可以表達為關于圖的推理(這就是為什么像Tree of Thoughts或Graph of Thoughts這樣的技術(shù)顯示出成功)。所以這似乎是測試Transformer能力的最佳選擇。盡管有不同的理論前提,但是進行嚴格分析并不容易:圖推理任務可以被歸類到已知的計算類別中。但是當我們想要評估一個神經(jīng)網(wǎng)絡解決這些任務的能力時,情況就不同了。在Transformer的情況下,我們也感興趣的不僅僅是固定深度的情況,還有通過改變層數(shù)從而學習更簡單或更復雜的表征時的變化。并且Transformer也可以在寬度上增長,這在考慮到對上下文長度的重新關注時尤其相關。作者總結(jié)了三類任務,它們的難度逐步增加,只能通過越來越復雜的模型來解決:1. 檢索任務。節(jié)點計數(shù)、邊計數(shù)、邊存在檢查和節(jié)點度數(shù)是只需要一次查找的任務,因此只需要一個Transformer層和一個小型嵌入。2. 可并行化任務。連通性、連接節(jié)點和循環(huán)檢查(以及更復雜的任務如二分性和平面性)可以用對數(shù)深度的Transformer解決。3. 搜索任務。最短路徑和其他需要更多推理的任務需要模型的擴展。

e53d2cd8-3809-11ef-a655-92fbcf53809c.jpg

論文中進行了幾項理論分析,展示了Transformer如何解決這些任務以及解決這些任務所需的維度要求。另一個有趣的點是,作者還分析了“pause tokens”的影響。


結(jié)果在對Transformer的推理能力進行了實證分析后。他們選擇使用從頭開始訓練的模型(最多60M參數(shù)),對預訓練的Transformer(T5,帶11B參數(shù))進行微調(diào),測試提示技術(shù),并將其與圖神經(jīng)網(wǎng)絡(GNNs)進行比較。使用GraphQA基準任務進行了實驗。

e542391c-3809-11ef-a655-92fbcf53809c.jpg

圖推理算法可以分為局部和全局兩種。前者在局部聚合信息(節(jié)點及其鄰居),而后者模擬節(jié)點之間可能是長距離的全局連接。論文主要專注于全局任務,如評估連通性或計算最短路徑(這些任務需要分析圖的全局結(jié)構(gòu))。在少數(shù)示例情況下,圖神經(jīng)網(wǎng)絡(GNNs)在這些任務中更為高效,但通過增加示例數(shù)量,Transformer的表現(xiàn)更好(Transformer仍然具有弱歸納偏見,需要許多示例才能最好地學習)。對Transformer進行微調(diào)也對預訓練的Transformer有積極影響。

e5464e76-3809-11ef-a655-92fbcf53809c.jpg

以前的研究已經(jīng)表明,對于圖神經(jīng)網(wǎng)絡(GNN)來說,以參數(shù)效率的方式解決連通性存在限制。微調(diào)后的模型似乎對連通性和最短路徑都更有效。雖然Transformer在解決全局任務方面更有效,但GNN在分析局部推理的任務中似乎更為高效:

表明GNN對于學習可以通過專門關注局部啟發(fā)式解決的圖推理任務具有有益的歸納偏見。(論文原文翻譯)

在GNN中的消息傳遞框架便于節(jié)點與其鄰居之間的信息傳遞(每增加一層相當于圖中的一次跳躍)。相比之下,注意力機制計算每對標記之間的關系,因此它通過全局任務來促進,但在數(shù)據(jù)量較低的情況下,識別重要的局部關系更為困難。

e549f4c2-3809-11ef-a655-92fbcf53809c.jpg

作者還測試了使用大型語言模型(LLM)的情況,對表現(xiàn)優(yōu)異的Transformer進行微調(diào)優(yōu)于使用提示方法。盡管在訓練過程中,LLM會在語料庫中看到圖數(shù)據(jù),因此并不是完全沒有接觸過此類數(shù)據(jù)。但這表明在特定任務的情況下專業(yè)的小模型還是要更好,并且微調(diào)要比直接使用提示的方式好。

e555723e-3809-11ef-a655-92fbcf53809c.jpg

總結(jié)這篇論文詳細展示了Transformer在圖推理方面的能力,并且涵蓋了不同的參數(shù)縮放模式。許多問題可以被重新表述為圖問題,所以這篇論文還是值得閱讀。并且論文還顯示,一些能力的展示需要一定的網(wǎng)絡深度,以便讓Transformer解決問題。例如在需要全局推理的任務中,Transformer超過了圖神經(jīng)網(wǎng)絡(GNN),這得益于自注意力機制,它允許長距離依賴關系被高效評估。這些發(fā)現(xiàn)為使用Transformer處理具有復雜全局依賴性的圖推理任務提供了理論和實證支持。

論文地址:https://arxiv.org/abs/2405.18512
作者:Salvatore Raieli

本文來源:DeepHub IMBA

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4832

    瀏覽量

    107376
  • 人工智能
    +關注

    關注

    1815

    文章

    50005

    瀏覽量

    264025
  • 模型
    +關注

    關注

    1

    文章

    3713

    瀏覽量

    51994
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    神經(jīng)網(wǎng)絡的初步認識

    日常生活中的智能應用都離不開深度學習,而深度學習則依賴于神經(jīng)網(wǎng)絡的實現(xiàn)。什么是神經(jīng)網(wǎng)絡神經(jīng)網(wǎng)絡的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大腦中神經(jīng)
    的頭像 發(fā)表于 12-17 15:05 ?243次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡</b>的初步認識

    Transformer如何讓自動駕駛變得更聰明?

    ]自動駕駛中常提的Transformer本質(zhì)上是一種神經(jīng)網(wǎng)絡結(jié)構(gòu),最早在自然語言處理里火起來。與卷積神經(jīng)網(wǎng)絡(CNN)或循環(huán)神經(jīng)網(wǎng)絡(RNN)不同,
    的頭像 發(fā)表于 11-19 18:17 ?2180次閱讀

    NMSIS神經(jīng)網(wǎng)絡庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓練框架,目標是訓練一個手寫數(shù)字識別的神經(jīng)網(wǎng)絡
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(LNN):時間連續(xù)性與動態(tài)適應性的神經(jīng)網(wǎng)絡

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡架構(gòu),其設計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?1011次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡</b>(LNN):時間連續(xù)性與動態(tài)適應性的<b class='flag-5'>神經(jīng)網(wǎng)絡</b>

    神經(jīng)網(wǎng)絡的并行計算與加速技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡在眾多領域展現(xiàn)出了巨大的潛力和廣泛的應用前景。然而,神經(jīng)網(wǎng)絡模型的復雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計算方式面臨著巨大的挑戰(zhàn),如計算速度慢、訓練時間長等
    的頭像 發(fā)表于 09-17 13:31 ?1035次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡</b>的并行計算與加速技術(shù)

    基于神經(jīng)網(wǎng)絡的數(shù)字預失真模型解決方案

    在基于神經(jīng)網(wǎng)絡的數(shù)字預失真(DPD)模型中,使用不同的激活函數(shù)對整個系統(tǒng)性能和效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3383次閱讀

    神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡網(wǎng)絡結(jié)構(gòu)設計原則

    BP(back propagation)神經(jīng)網(wǎng)絡是一種按照誤差逆向傳播算法訓練的多層前饋神經(jīng)網(wǎng)絡,其網(wǎng)絡結(jié)構(gòu)設計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不進行任何計算
    的頭像 發(fā)表于 02-12 16:41 ?1459次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1572次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1952次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1494次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1631次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結(jié)構(gòu) BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:13 ?1779次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    BP神經(jīng)網(wǎng)絡在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡能夠?qū)W習到復雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡在圖像識別中應用的分析: 一、BP神經(jīng)網(wǎng)絡基本原理 BP
    的頭像 發(fā)表于 02-12 15:12 ?1345次閱讀