chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

對無橋功率因數(shù)校正拓?fù)浣Y(jié)構(gòu),檢測整流后AC電流很關(guān)鍵

電子設(shè)計(jì) ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-03-21 08:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

由于效率要求的不斷增長,許多電源制造廠商開始將注意力轉(zhuǎn)向無橋功率因數(shù)校正 (PFC) 拓?fù)浣Y(jié)構(gòu)。一般而言,無橋接 PFC可以通過減少線路電流通路中的半導(dǎo)體組件數(shù)目來降低傳導(dǎo)損耗。盡管無橋接 PFC 的概念已經(jīng)提出了許多年,但因其實(shí)施的難度和控制的復(fù)雜程度,阻礙了其成為一種主流。

一些專為電源而設(shè)計(jì)的低成本、高性能數(shù)字控制器上市以后,越來越多的電源公司開始為 PFC 設(shè)計(jì)選擇使用這些新型數(shù)字控制器。相比傳統(tǒng)的模擬控制器,數(shù)字控制器擁有許多優(yōu)勢,例如:可編程配置、非線性控制、低組件數(shù)目,以及最為重要的復(fù)雜功能實(shí)施能力(模擬方法通常較難實(shí)現(xiàn))。

大多數(shù)現(xiàn)今的數(shù)字電源控制器,例如:TI 的融合數(shù)字電源 (Fusion Digital PowerTM) 控制器 UCD30xx 等都有許多集成電源控制外設(shè)和一個電源管理內(nèi)核,例如:數(shù)字環(huán)路補(bǔ)償器、快速模數(shù)轉(zhuǎn)換器 (ADC)、內(nèi)置停滯時間的高分辨率數(shù)字脈寬調(diào)制器 (DPWM)、低功耗微控制器等。它們是如無橋接 PFC 等復(fù)雜高性能電源設(shè)計(jì)的較好選擇。

數(shù)字控制無橋接 PFC

在其他一些無橋接 PFC 拓?fù)浣Y(jié)構(gòu)中[1] [2],圖 1是一個已經(jīng)為業(yè)界所廣泛采用的無橋接 PFC 實(shí)例。它具有兩個 DC/DC 升壓電路[3] [4],一個由 L1、D1 和S1 組成,而另一個則由 L2、D2 和 S2 組成。D3 和 D4 為慢速恢復(fù)二極管。通過參考內(nèi)部電源接地單獨(dú)檢測線壓和中性點(diǎn)電壓,測量得到輸入 AC 電壓。通過對比檢測線壓信號和中性點(diǎn)信號,固件便知道其為一個正半周期,還是一個負(fù)半周期。在一個正半周期期間,第一個 DC/DC 升壓電路即 L1-S1-D1 有效,同時升壓電流回到二極管 D4 的 AC 中性點(diǎn)。在一個負(fù)半周期期間,第二個 DC/DC 升壓電路即 L2-S2-D2 有效,同時升壓電流回到二極管 D3 的 AC 線。像 UCD3020 這樣的數(shù)字控制器用于控制這種無橋接 PFC。

圖 1 數(shù)字控制無橋接 PFC

無橋接 PFC 基本都由兩個相升壓電路組成,但在任何時候都只有一個相有效。對比使用相同功率器件的傳統(tǒng)單相 PFC,無橋接 PFC 和單相 PFC 的開關(guān)損耗應(yīng)該是一樣的。但是,無橋接 PFC 電流在任何時候都只通過一個慢速二極管(正半周期為 D4,負(fù)半周期為 D3),而非兩個。因此,效率提高的多少取決于一個二極管和兩個二極管之間的傳導(dǎo)損耗差異。另外,通過完全開啟關(guān)閉的開關(guān)可以進(jìn)一步提高無橋接 PFC 效率。例如,在一個正周期期間,S1 通過 PWM 信號控制,而 S2 則可以完全開啟。當(dāng)流動的電流低于某個值時,MOSFET S2 的壓降可能會低于二極管 D4,因此返回電流部分或者全部流經(jīng) L1-D1-RL-S2-L2,然后返回 AC 源。傳導(dǎo)損耗可以降低,電路效率也可以得到提高,特別是在輕負(fù)載的情況下。同樣,在一個負(fù)周期期間,S2 開關(guān)時,S1 被完全開啟。圖 2顯示了 S1 和 S2 的控制波形。

圖 2 無橋接 PFC 的 PWM 波形

自適應(yīng)總線電壓和開關(guān)頻率控制

傳統(tǒng)上,效率指的是滿負(fù)載狀態(tài)下高線壓和低線壓的效率。現(xiàn)在,如計(jì)算服務(wù)器和遠(yuǎn)距離通信電源等大多數(shù)應(yīng)用,除滿負(fù)載狀態(tài)效率以外,還要求 10%-50% 負(fù)載范圍狀態(tài)的效率也必須滿足標(biāo)準(zhǔn)規(guī)范。大多數(shù) AC/DC 應(yīng)用中,系統(tǒng)有 PFC 和下游DC/DC 級,因此我們根據(jù)整個系統(tǒng)來測量效率。若想提高輕負(fù)載狀態(tài)下的總系統(tǒng)效率,一種方法是降低 PFC 輸出電壓和開關(guān)頻率。這要求了解負(fù)載信息,而這項(xiàng)工作通常是通過使用一些額外電路測量輸出電流來實(shí)現(xiàn)的。但是,利用數(shù)字控制器,便不再需要這些額外電路。輸入 AC 電壓和 DC 輸出電壓相同時,輸出電流與電壓環(huán)路輸出成正比。因此,如果我們知道電壓環(huán)路的輸出,我們便可以相應(yīng)地調(diào)節(jié)頻率和輸出電壓。使用數(shù)字控制器以后,電壓環(huán)路通過固件來實(shí)現(xiàn),其輸出已知,所以實(shí)現(xiàn)這種特性便十分容易,并且成本比使用模擬方法要低得多。

通過變流器實(shí)現(xiàn)電流檢測

無橋接 PFC 的難題之一是如何檢測整流后的 AC 電流。如前所述,AC 返回電流(部分或者全部)可能會流經(jīng)處于非活動狀態(tài)的開關(guān),而非慢速二極管 D3/D4。因此,在接地通路中使用一個分路器來檢測電流(通常在傳統(tǒng) PFC 中使用),已不再適用。取而代之的是,使用一個變流器 (CT),每相一個(圖 1)。這兩個變流器的輸出被整流,然后組合在一起,產(chǎn)生電流反饋信號。由于在任何時候都只有一個變流器整流輸出信號,即使在其組合時也是如此,因此任何時候都只有一個反饋電流信號。

圖 3 連續(xù)導(dǎo)通模式的檢測電流波形

圖 4 非連續(xù)導(dǎo)通模式的檢測電流波形

如圖 3-4所示,由于變流器放置在開關(guān)的右上方,因此其只檢測開關(guān)電流(只是電感電流的上升部分)。數(shù)字控制實(shí)施時,在時間 Ta 的 PWM 中間測量該開關(guān)電流信號。它是一個瞬時值,在圖 3-4中以 Isense 表示。僅當(dāng)該電流為連續(xù)電流時,測得開關(guān)電流 Isense 才等于平均 PFC 電感電流(請參見圖 3)。該電流變?yōu)槿鐖D 4所示非連續(xù)電流時,Isense 不再等于平均 PFC 電感電流。為了計(jì)算電感平均電流,應(yīng)該建立某個開關(guān)時間期間中間點(diǎn)檢測電流 Isense 和平均電感電流之間的關(guān)系,并且這種關(guān)系應(yīng)該同時適用于連續(xù)導(dǎo)通模式 (CCM) 和非連續(xù)導(dǎo)通模式 (DCM)。

就一個穩(wěn)態(tài)運(yùn)行的升壓型轉(zhuǎn)換器而言,升壓電感的第二電壓應(yīng)在所有開關(guān)期間都保持平衡:

方程式 (1)

其中,Ta 為電流上升時間(PWM 導(dǎo)通時間),Tb 為電流下降時間(PWM 關(guān)閉時間),VIN 為輸入電壓,而 VO 為輸出電壓,并假設(shè)所有電源器件均為理想狀態(tài)。

由圖 3-4,我們可以通過 Isense 計(jì)算出電感平均電流 Iave:

方程式 (2)

其中,T 為開關(guān)時間。

將(1)和(2)組合,我們得到:

方程式 (3)

通過方程式 3,平均電感電流 Iave 表示為瞬時開關(guān)電流 Isense。理想電流 Iave 和 Isense 為電流控制環(huán)路的電流基準(zhǔn)。檢測到現(xiàn)實(shí)瞬時開關(guān)電流后,將其與該基準(zhǔn)對比,誤差被發(fā)送至一個快速誤差 ADC (EADC),最終將數(shù)字化的誤差信號發(fā)送至一個數(shù)字補(bǔ)償器,以關(guān)閉電流控制環(huán)路。

動態(tài)調(diào)節(jié)環(huán)路補(bǔ)償器

總諧波失真 (THD) 和功率因數(shù) (PF) 是兩個判定 PFC 性能非常重要的標(biāo)準(zhǔn)。一個好的環(huán)路補(bǔ)償器應(yīng)該具有較好的 THD 和 PF。但是,PFC 的輸入范圍如此之寬,其可以從 80 Vac 擴(kuò)展至高達(dá) 265 Vac。低線壓狀態(tài)下?lián)碛休^高性能的補(bǔ)償器,在高線壓狀態(tài)下未必能夠較好地工作。最佳方法是根據(jù)輸入電壓相應(yīng)地調(diào)節(jié)環(huán)路補(bǔ)償器。這對一個模擬控制器來說可能是一項(xiàng)不可能完成的任務(wù),但對于如 UCD3020 等一些數(shù)字控制器來說,則可以輕松地實(shí)現(xiàn)。

這種芯片中的數(shù)字補(bǔ)償器是一種數(shù)字濾波器,其由一個與一階 IIR 濾波器級聯(lián)的二階無限脈沖響應(yīng) (IIR) 濾波器組成。控制參數(shù)即所謂的系數(shù),均保存在一組寄存器中。該寄存器組被稱作記憶槽。共有兩條這種記憶槽,每條可存儲不同的系數(shù)。只有一條記憶槽的系數(shù)有效,用于補(bǔ)償計(jì)算,而另一條則處于未激活狀態(tài)。固件始終都可以向未激活的記憶槽加載新的系數(shù)。在 PFC 運(yùn)行期間,可在任何時候調(diào)換系數(shù)記憶槽,以便允許補(bǔ)償器使用不同的控制參數(shù),適應(yīng)不同的運(yùn)行狀態(tài)。

有這種靈活性以后,我們可以存儲兩個不同的系數(shù)組(一個用于低線壓,另一個用于高線壓),并根據(jù)輸入電壓調(diào)換系數(shù)。環(huán)路帶寬、相位余量和增益余量都可在低線壓和高線壓下得到優(yōu)化。利用這種動態(tài)調(diào)節(jié)控制環(huán)路系數(shù),并使用固件來對變流器可能出現(xiàn)的偏移量進(jìn)行補(bǔ)償,可以極大地改善 THD 和 PF。圖 5-6是一些基于 1100W 無橋接 PFC 的測試結(jié)果,低線壓時 THD 為 2.23%,高線壓時 THD 為 2.27%,而 PF 分別為 0.998 和 0.996。

圖 5 低線壓的 VIN和IIN 波形(VIN = 110V, 負(fù)載= 1100W, THD = 2.23%, PF = 0.998)

圖 6 高線壓的VIN和IIN波形(VIN = 220V, 負(fù)載= 1100W, THD = 2.27%, PF = 0.996)

改善輕負(fù)載 PF

每個 PFC 在輸入端都有一定的電磁干擾 (EMI) 濾波器。EMI 濾波器的 X 電容器會引起 AC 輸入電流引導(dǎo) AC 電壓,從而影響 PF。在輕負(fù)載和高線壓狀態(tài)下,這種情況變得更糟糕。PF 很難滿足嚴(yán)格的規(guī)范。要想增加輕負(fù)載的 PF,我們需要相應(yīng)地強(qiáng)制電流延遲。我們?nèi)绾螌?shí)現(xiàn)呢?

我們都知道,PFC 電流控制環(huán)路不斷嘗試強(qiáng)制電流匹配其基準(zhǔn)。該基準(zhǔn)基本上為 AC 電壓信號,只是大小不同。因此,如果我們能夠延遲電壓檢測信號,并將延遲后的電壓信號用于電流基準(zhǔn)生成,便可以讓電流延遲來匹配 AC 電壓信號,從而使 PF 得到改善。這對一個模擬控制器來說很困難,但對數(shù)字控制而言,只需幾行代碼便可以實(shí)現(xiàn)。

首先,輸入 AC 電壓通過 ADC 測量。固件讀取經(jīng)測量的電壓信號,增加一些延遲,然后使用延遲后的信號來生成電流基準(zhǔn)。圖 7-8顯示了基于 1100W 無橋接 PFC 的測試結(jié)果。在這種測試中,Vin = 220V,Vout = 360V,而負(fù)載 = 108W(約全部負(fù)載的 10%)。通道 1 為 Iin,通道 2 為 Vin,通道 4 為帶延遲的測量 VIN 信號。圖 7中,經(jīng)測量的Vin沒有增加延遲,PF=0.86,THD=8.8%。圖 8 中,測量 Vin 信號被延遲了 300us,PF 改善至 0.90。進(jìn)一步改善PF是可能的,但付出的代價是 THD,因?yàn)檫M(jìn)一步延遲電流基準(zhǔn)在 AC 電壓交叉點(diǎn)產(chǎn)生更多的電流失真。圖 9中,測量 Vin 被延遲了 500us,PF 改善為 0.92。但是,電流在電壓交叉點(diǎn)出現(xiàn)失真。結(jié)果,THD 變得更糟糕,達(dá)到 11.3%。

圖 7 無測量 VIN 延遲

圖 8 測量 VIN 延遲 300us。

圖 9 測量 VIN 延遲 500us。

非線性控制

相比電流環(huán)路,電壓環(huán)路控制復(fù)雜度更低。數(shù)字實(shí)施時,輸出電壓 VO 通過一個 ADC 檢測,然后同電壓基準(zhǔn)比較。我們可以使用一個簡單的比例積分 (PI) 控制器來關(guān)閉該環(huán)路。

方程式 (4)

其中,U 為控制輸出,Kp 和 Ki 分別為比例項(xiàng)和積分調(diào)節(jié)增益。E[n] 為 DC 輸出電壓誤差采樣。

如前所述,使用數(shù)字控制的諸多好處之一是它能夠?qū)崿F(xiàn)非線性控制。我們使用非線性 PI 控制的目的便是提高瞬態(tài)響應(yīng)。圖 10顯示了非線性 PI 控制的一個實(shí)例。誤差更大時(通過出現(xiàn)在瞬態(tài)下),使用更大的 Kp。誤差超出設(shè)置限制時這樣會加速環(huán)路響應(yīng),同時恢復(fù)時間縮短。使用積分器時,又是另外一種情況。眾所周知,積分器用于消除穩(wěn)態(tài)誤差。但是,它通常會引起飽和問題,并且其 90 度相位滯后也會影響系統(tǒng)穩(wěn)定性。正因如此,我們使用了一個非線性積分調(diào)節(jié)增益[5](圖 10)。誤差超出一定程度時,積分調(diào)節(jié)增益Ki減小,以防止出現(xiàn)飽和、過沖和不穩(wěn)定性等問題。

圖 10 非線性PI控制

數(shù)字電壓環(huán)路控制的另一個優(yōu)點(diǎn)被稱為積分抗飽和。它一般出現(xiàn)在 AC 壓降狀態(tài)下。當(dāng) AC 壓降出現(xiàn),并且下游負(fù)載繼續(xù)吸取電流時,DC 輸出電壓開始下降,但是 PFC 控制環(huán)路仍然嘗試調(diào)節(jié)其輸出。因此,積分器積聚,并可能出現(xiàn)飽和,這種情況被稱為積分器飽和。一旦AC恢復(fù),飽和積分器便可能會引起 DC 輸出電壓過沖。若想防止出現(xiàn)這種情況,則一旦探測到 AC 恢復(fù),固件就重設(shè)積分器,同時 DC 輸出達(dá)到其調(diào)節(jié)點(diǎn)。

數(shù)字控制器還可以做得更多,例如:頻率抖動、系統(tǒng)監(jiān)控、通信等,并且可以為無橋接 PFC提供靈活的控制、更高的集成度以及更高的性能。在一些高端的 AC/DC 設(shè)計(jì)中,現(xiàn)在越來越多的設(shè)計(jì)正在使用數(shù)字控制器。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • DC/DC轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    2

    文章

    180

    瀏覽量

    11105
  • 功率因數(shù)校正
    +關(guān)注

    關(guān)注

    3

    文章

    120

    瀏覽量

    23901
  • 變流器
    +關(guān)注

    關(guān)注

    7

    文章

    308

    瀏覽量

    34288
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    閉合圖騰柱PFC控制環(huán)路的三種方法

    在所有功率因數(shù)校正 (PFC) 拓?fù)?/b>中,圖騰柱 PFC 具備出色效率,因而在服務(wù)器與數(shù)據(jù)中心中得到廣泛應(yīng)用。
    的頭像 發(fā)表于 10-27 17:03 ?3585次閱讀
    閉合圖騰柱<b class='flag-5'>無</b><b class='flag-5'>橋</b>PFC控制環(huán)路的三種方法

    揭秘光伏并網(wǎng)功率因數(shù)降低之謎!

    功率因數(shù)
    jf_01244414
    發(fā)布于 :2025年10月17日 14:48:28

    功率因數(shù)PF與cosФ的區(qū)別

    )的比值。這是一個最根本、最通用的定義,公式:PF=P/S。衡量電能被負(fù)載有效利用的總體效率。 功率因數(shù)(cosφ):在電壓和電流均為純正弦波(畸變)的理想條件下,φ是基波電壓與基波電流
    的頭像 發(fā)表于 10-15 10:32 ?305次閱讀
    <b class='flag-5'>功率因數(shù)</b>PF與cosФ的區(qū)別

    德州儀器模擬設(shè)計(jì)|采用峰值電流模式控制的功率因數(shù)校正

    75W 以上的功率級別時,離線電源需要功率因數(shù)校正 (PFC)。PFC 的目標(biāo)是控制輸入電流以跟隨輸入電壓,從而使負(fù)載看起來像是純電阻器。對于正弦交流輸入電壓,輸入
    的頭像 發(fā)表于 09-22 17:59 ?7030次閱讀
    德州儀器模擬設(shè)計(jì)|采用峰值<b class='flag-5'>電流</b>模式控制的<b class='flag-5'>功率因數(shù)</b><b class='flag-5'>校正</b>

    替代UCC28070雙相交錯CCM功率因數(shù)校正PFC控制器

    產(chǎn)品描述: PC8070是一款先進(jìn)的功率因數(shù)校正(PFC)控制器,集成了兩個180°異相工作的脈寬調(diào)制器。這種交錯的PWM工作模式下大大減少輸入和輸出紋波電流,易于增強(qiáng)抗 EMI能力,且成本更低
    發(fā)表于 06-05 10:08

    PF-A系到功率因數(shù)校正模塊的基本組成和工作原理

    由中電華星提供的PF-A系到功率因數(shù)校正模塊內(nèi)部由輸入整流電路、升壓電路、輸出整流電路、控制電路、市電電壓取樣電路、稲出電壓取材電路、電流
    的頭像 發(fā)表于 06-05 09:54 ?2.1w次閱讀
    PF-A系到<b class='flag-5'>功率因數(shù)</b><b class='flag-5'>校正</b>模塊的基本組成和工作原理

    功率因數(shù)校正技術(shù)解析

    功率因數(shù)校正(PFC)可減少交流電源系統(tǒng)中的能源浪費(fèi)和基礎(chǔ)設(shè)施壓力,從而顯著提高效率。本文介紹了功率因數(shù) (PF) 的概念,解釋了低功率因數(shù)造成的問題,并概述了 PFC 的優(yōu)勢。它還重
    的頭像 發(fā)表于 05-12 10:38 ?1017次閱讀
    <b class='flag-5'>功率因數(shù)</b><b class='flag-5'>校正</b>技術(shù)解析

    功率因數(shù)對軟起動的影響

    功率因數(shù)作為衡量電力系統(tǒng)中用電設(shè)備效率的關(guān)鍵指標(biāo),其數(shù)值高低直接關(guān)系到電網(wǎng)的穩(wěn)定運(yùn)行及電器設(shè)備的正常啟動。而軟起動作為一種電氣控制技術(shù),通過控制啟動過程中的電壓和電流,實(shí)現(xiàn)電機(jī)平穩(wěn)啟動,以減少對電網(wǎng)
    的頭像 發(fā)表于 04-17 16:08 ?792次閱讀

    功率因數(shù)的定義、特性及應(yīng)用

    功率因數(shù)是電源電路使用有功功率的效率指標(biāo),用從0到1的值來表示。其值越接近1,功率因數(shù)越高,意味著功率的使用效率越好。交流電功率
    的頭像 發(fā)表于 04-09 18:06 ?5405次閱讀
    <b class='flag-5'>功率因數(shù)</b>的定義、特性及應(yīng)用

    UC3854 功率因數(shù)校正設(shè)計(jì)全攻略:從理論到實(shí)戰(zhàn)

    【限時下載】UC3854 功率因數(shù)校正(PFC)設(shè)計(jì)全攻略:從理論到實(shí)戰(zhàn),工程師必備技術(shù)手冊 *附件:《UC3854 功率因數(shù)校正設(shè)計(jì)全攻略:從理論到實(shí)戰(zhàn)》.pdf 為什么工程師必須掌
    的頭像 發(fā)表于 04-09 15:35 ?1108次閱讀
    UC3854 <b class='flag-5'>功率因數(shù)</b><b class='flag-5'>校正</b>設(shè)計(jì)全攻略:從理論到實(shí)戰(zhàn)

    圖騰柱PFC(功率因數(shù)校正)電路的三種閉環(huán)控制方法

    高效能圖騰柱PFC閉環(huán)控制方案——為EE工程師量身打造的革新設(shè)計(jì) *附件:圖騰柱PFC(功率因數(shù)
    的頭像 發(fā)表于 03-24 20:53 ?2116次閱讀

    PFC變換器綜述

    拓?fù)?/b>電路結(jié)構(gòu)和控制方法等原因進(jìn)行抑制,外因是系統(tǒng)中已經(jīng)有諧波了,通過在系統(tǒng)中并聯(lián)濾波器(源濾波器或者有源濾波器)來進(jìn)行抑制。本文分析的功率因素校正
    發(fā)表于 03-13 13:50

    MDD整流橋諧波抑制全攻略:LC濾波與有源PFC的工程平衡術(shù)

    在電力電子應(yīng)用中,MDD整流橋廣泛用于AC-DC轉(zhuǎn)換,但其非線性整流特性會產(chǎn)生較大的諧波電流,影響電網(wǎng)質(zhì)量,甚至導(dǎo)致電磁干擾(EMI)超標(biāo)。為抑制諧波,提高
    的頭像 發(fā)表于 03-13 09:41 ?907次閱讀
    MDD<b class='flag-5'>整流橋</b>諧波抑制全攻略:LC濾波與有源PFC的工程平衡術(shù)

    開關(guān)電源中的功率因數(shù)校正電路詳解

    本文今天要講的PFC,是指開關(guān)電源中功率因數(shù)校正電路。
    的頭像 發(fā)表于 03-06 10:18 ?1978次閱讀
    開關(guān)電源中的<b class='flag-5'>功率因數(shù)</b><b class='flag-5'>校正</b>電路詳解

    RCD負(fù)載功率因數(shù)如何調(diào)整?

    功率因數(shù)是衡量電氣設(shè)備效率的重要指標(biāo),對于RCD(電阻-電容-二極管)負(fù)載而言,其功率因數(shù)的調(diào)整尤為關(guān)鍵。本文將詳細(xì)介紹如何調(diào)整RCD負(fù)載的功率因數(shù),以提高電能的利用效率。
    的頭像 發(fā)表于 01-04 09:58 ?2001次閱讀
    RCD負(fù)載<b class='flag-5'>功率因數(shù)</b>如何調(diào)整?