chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

用深度學習分析電子病歷 進行臨床預測

Qp2m_ggservicer ? 來源:未知 ? 作者:胡薇 ? 2018-05-15 14:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

如今利用機器學習預測事態(tài)發(fā)展已經(jīng)非常普遍。我們可以用它預測通勤途中的交通狀況,以及將英文翻譯成西班牙語時需要用到的詞匯。那么,我們是否可以用相同類型的機器學習進行臨床預測呢?我們認為,要做到實用,預測模型必須具備以下兩點特征:

可擴展:該預測模型要能進行多項預測,得出所有我們想要的信息,并且適用于不同醫(yī)院的系統(tǒng)。鑒于醫(yī)療保健數(shù)據(jù)十分復雜,需要進行大量數(shù)據(jù)處理,這一要求并不容易滿足。

精度高:預測結果需能幫助醫(yī)生關注真正的問題所在,而不是用誤報警分散醫(yī)生的注意力。隨著電子病歷逐漸普及,我們正嘗試用其中的數(shù)據(jù)建立更加精準的預測模型。

我們聯(lián)合加州大學舊金山分校、斯坦福大學醫(yī)學院和芝加哥大學醫(yī)學院的同事,在《自然》雜志的兄弟期刊——《數(shù)字醫(yī)學》上發(fā)表了題為《可擴展且精準的深度學習與電子健康記錄》的論文。這篇論文對實現(xiàn)前文所述的兩個目標有所幫助。

基于脫敏的電子病歷數(shù)據(jù),我們用深度學習模型對住院患者進行了廣泛預測。值得一提的是,該模型可以直接使用原始數(shù)據(jù),無需人工對相關變量進行提取、清洗、整理、轉換等一系列費時費力的操作。合作伙伴在將電子病歷數(shù)據(jù)交給我們之前,先對其進行了脫敏處理。我們也采用了最先進的措施保障數(shù)據(jù)安全,包括邏輯分隔、嚴格的訪問控制,以及靜態(tài)和傳輸中的數(shù)據(jù)加密。

可擴展性

電子病歷非常復雜。以體溫為例,因測量位置不同(舌頭下方、耳膜或額頭),其往往具有不同含義。而體溫不過是電子病歷眾多參數(shù)中最簡單的之一。此外,各個衛(wèi)生系統(tǒng)都有一套自己定制的電子病例系統(tǒng),導致各個醫(yī)院的采集的數(shù)據(jù)大不相同。用機器學習處理這些數(shù)據(jù)之前,需要先將其統(tǒng)一格式?;陂_放的FHIR標準,我們構建了一套標準格式。

格式統(tǒng)一后,我們就不需要手動選擇或調(diào)整相關變量了。進行各項預測時,深度學習模型會自動掃描過去到現(xiàn)在的所有數(shù)據(jù)點,并分析其中哪些數(shù)據(jù)對預測是有價值的。由于這一過程涉及數(shù)千個數(shù)據(jù)點,我們不得不開發(fā)了一些基于遞歸神經(jīng)網(wǎng)絡(RNN)和前饋網(wǎng)絡的新型深度學習建模方法。

*我們用時間線來展示患者電子病歷中的數(shù)據(jù)。為方便說明,我們按行顯示各種類型的臨床數(shù)據(jù),其中每個數(shù)據(jù)片段都用灰點表示,它們被存儲在FHIR中。FHIR是一種可供任何醫(yī)療機構使用的開放式數(shù)據(jù)標準。深度學習模型通過從左往右掃描時間表,分析患者從圖標開頭到現(xiàn)在的住院信息,并據(jù)此進行不同類型的預測。

就這樣我們設計了一個計算機系統(tǒng),以可擴展的方式進行預測,而無需為每項預測任務手動制作新的數(shù)據(jù)集。設置數(shù)據(jù)只是全部工作中的一部分,保證預測的準確性也十分重要。

準確性

評估準確性的最常見方法是受試者工作曲線下面積,它可以有效評估模型區(qū)分特定未來結果患者和非特定未來結果患者的效果。 在這個度量標準中,1.00代表完美,0.50代表不比隨機結果更準確,也就是說得分越高代表模型越準確。通過測試,我們的模型在預測患者是否會在醫(yī)院停留很久時,得分為0.86(傳統(tǒng)邏輯回歸模型的評分為0.76);預測住院病死率時的得分為0.95(傳統(tǒng)模型的得分為0.86);預測出院后意外再住院率時得分為0.77(傳統(tǒng)模型得分為0.70)。從得分上看,新方法的準確率提升非常顯著。

我們還用這些模型來確定患者接受的治療,比如醫(yī)生為發(fā)燒、咳嗽的患者開具頭孢曲松和強力霉素,該模型就會判定患者正在接受肺炎治療。必須強調(diào),該模型并不會給患者做診斷,它只是收集患者的相關信號,以及臨床醫(yī)生編寫的治療方案和筆記。因此,它更像是一位優(yōu)秀的聽眾而不是主診醫(yī)生。

深度學習模型的可解釋性是我們工作重點之一。每項預測的“注意圖”會展示模型在進行該項預測時認為重要的那些數(shù)據(jù)點。我將展示一個例子作為概念驗證,并將其視為讓預測對臨床醫(yī)生產(chǎn)生價值的重要部分。

*患者入院24小時后,我們使用深度學習進行預測。上圖頂部的時間表包含了患者幾個月時間的歷史數(shù)據(jù),我們將最近的數(shù)據(jù)做了放大顯示。模型用紅色標識了患者信息圖表中用于“解釋”其預測的信息。在這個研究案例中,模型標注了臨床上有意義的信息片段。

這對患者和臨床醫(yī)生意味著什么?

這項研究成果還處于早期階段,而且是基于回顧性數(shù)據(jù)得出的。事實上,證明機器學習可用于改善醫(yī)療保健這一假設還有做很多工作要做,本文不過是個開始。醫(yī)生們正窮于應付各種警報和需求,機器學習模型是否能幫助處理繁瑣的管理任務,讓他們更專注于護理有需要的患者?我們是否可以幫助患者獲得高質量的護理,無論他們在哪里尋求治療?我們期待著與醫(yī)生和患者合作,找出這些問題的答案。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 深度學習
    +關注

    關注

    73

    文章

    5586

    瀏覽量

    123670

原文標題:GGAI 前沿 | Google醫(yī)療AI新成果:用深度學習分析電子病歷 預測患者病情發(fā)展

文章出處:【微信號:ggservicerobot,微信公眾號:高工智能未來】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何在機器視覺中部署深度學習神經(jīng)網(wǎng)絡

    圖 1:基于深度學習的目標檢測可定位已訓練的目標類別,并通過矩形框(邊界框)對其進行標識。 在討論人工智能(AI)或深度學習時,經(jīng)常會出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?507次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學習</b>神經(jīng)網(wǎng)絡

    深度學習對工業(yè)物聯(lián)網(wǎng)有哪些幫助

    、實施路徑三個維度展開分析: 一、深度學習如何突破工業(yè)物聯(lián)網(wǎng)的技術瓶頸? 1. 非結構化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結構化數(shù)據(jù)(如設備振動波形、紅外圖像、日志文本),傳統(tǒng)方法難以
    的頭像 發(fā)表于 08-20 14:56 ?547次閱讀

    電磁軌跡預測分析系統(tǒng)

    電磁軌跡預測分析系統(tǒng)軟件全面解析
    的頭像 發(fā)表于 07-30 16:32 ?291次閱讀
    電磁軌跡<b class='flag-5'>預測</b><b class='flag-5'>分析</b>系統(tǒng)

    存儲示波器的存儲深度對信號分析有什么影響?

    存儲深度(Memory Depth)是數(shù)字示波器的核心參數(shù)之一,它直接決定了示波器在單次采集過程中能夠記錄的采樣點數(shù)量。存儲深度對信號分析的影響貫穿時域細節(jié)捕捉、頻域分析精度、觸發(fā)穩(wěn)定
    發(fā)表于 05-27 14:39

    電磁軌跡預測分析系統(tǒng)軟件全面解析

    電磁軌跡預測分析系統(tǒng)軟件:深度解析 系統(tǒng)概述 北京華盛恒輝電磁軌跡預測分析系統(tǒng)軟件,借助電磁學原理和先進計算技術,能實時
    的頭像 發(fā)表于 04-12 16:10 ?813次閱讀

    樹莓派搞深度學習?TensorFlow啟動!

    介紹本頁面將指導您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個專為深度學習開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?819次閱讀
    <b class='flag-5'>用</b>樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學習</b>?TensorFlow啟動!

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?716次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡權重,目的是最小化網(wǎng)絡的輸出誤差。 二、深度學習的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?1187次閱讀

    如何使用RNN進行時間序列預測

    一種強大的替代方案,能夠學習數(shù)據(jù)中的復雜模式,并進行準確的預測。 RNN的基本原理 RNN是一種具有循環(huán)結構的神經(jīng)網(wǎng)絡,它能夠處理序列數(shù)據(jù)。在RNN中,每個輸入序列的元素都會通過一個或多個循環(huán)層,這些循環(huán)層可以捕獲時間序列數(shù)據(jù)中
    的頭像 發(fā)表于 11-15 09:45 ?1189次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發(fā)展,深度學習作為其核心驅動力之一,已經(jīng)在眾多領域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?2554次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?898次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1927次閱讀

    激光雷達技術的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術的發(fā)展 深度學習是機器學習的一個分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1332次閱讀

    FPGA加速深度學習模型的案例

    :DE5Net_Conv_Accelerator 應用場景 :面向深度學習的開源項目,實現(xiàn)了AlexNet的第一層卷積運算加速。 技術特點 : 采用了Verilog語言進行編程,與PCIe接口相集成,可以直接插入到
    的頭像 發(fā)表于 10-25 09:22 ?1534次閱讀

    AI大模型與深度學習的關系

    人類的學習過程,實現(xiàn)對復雜數(shù)據(jù)的學習和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法為AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?3385次閱讀