來(lái)源:納芯微電子
增強(qiáng)型GaN HEMT具有開(kāi)關(guān)速度快、導(dǎo)通電阻低、功率密度高等特點(diǎn),正廣泛應(yīng)用于高頻、高效率的電源轉(zhuǎn)換和射頻電路中。但由于其柵極電容小,柵極閾值電壓低(通常在1V到2V之間)、耐受電壓低(通常-5V到7V)等特點(diǎn),使得驅(qū)動(dòng)電路設(shè)計(jì)時(shí)需格外注意,防止開(kāi)關(guān)過(guò)程中因誤導(dǎo)通或振蕩而導(dǎo)致器件失效。
為應(yīng)對(duì)這一挑戰(zhàn),本文深入分析GaN HEMT在開(kāi)通與關(guān)斷時(shí)的振蕩機(jī)制,通過(guò)合理配置驅(qū)動(dòng)電阻與柵源間RC吸收支路等策略,有效抑制振蕩與過(guò)沖。同步結(jié)合納芯微高壓半橋NSD2622N GaN HEMT驅(qū)動(dòng)器的應(yīng)用測(cè)試,驗(yàn)證了多種器件與參數(shù)組合下的優(yōu)化效果,助力系統(tǒng)實(shí)現(xiàn)穩(wěn)定、可靠的高頻驅(qū)動(dòng)設(shè)計(jì)。
01GaN HEMT開(kāi)關(guān)過(guò)程中振蕩機(jī)制與驅(qū)動(dòng)設(shè)計(jì)考量
圖1 GaN HEMT驅(qū)動(dòng)電路
常見(jiàn)的GaN HEMT驅(qū)動(dòng)電路如圖1所示,工作時(shí)分別由電阻R1和R2來(lái)調(diào)節(jié)其開(kāi)通和關(guān)斷速度。該驅(qū)動(dòng)電路可以看作一個(gè)串聯(lián)的LRC電路。GaN HEMT開(kāi)通時(shí),受漏極高的dv/dt和米勒電容CGD的影響,柵極電壓可能出現(xiàn)振蕩或過(guò)沖,其電流路徑如圖1中的ISRC所示。這種振蕩或過(guò)沖將引起GaN HEMT功耗增加或失效。為了避免過(guò)大的振蕩或過(guò)沖,開(kāi)通時(shí)總的柵極等效電阻建議大于公式(1)中給出的值。
公式(1)
其中LG為開(kāi)通時(shí)總的等效寄生電感,RG(eq)為開(kāi)通時(shí)總的等效驅(qū)動(dòng)電阻,CGS為GaN HEMT的柵極等效電容。
GaN HEMT關(guān)斷時(shí),受驅(qū)動(dòng)回路寄生電感和柵極關(guān)斷速度的影響,柵極電壓可能出現(xiàn)負(fù)向過(guò)沖或振蕩,這種過(guò)大的負(fù)向過(guò)沖或振蕩可能導(dǎo)致柵極擊穿或誤導(dǎo)通。其電流路徑如圖1中的Isink所示。設(shè)計(jì)時(shí)要避免這種過(guò)大的負(fù)向過(guò)沖或誤開(kāi)通發(fā)生。
從圖1可以看到,開(kāi)通和關(guān)斷時(shí)的電流路徑ISRC和Isink有所不同,對(duì)應(yīng)的開(kāi)通和關(guān)斷時(shí)總的等效寄生電感LG和等效電阻RG(eq)會(huì)有所差異。其中開(kāi)通時(shí)總的等效寄生電感LG包含了的電源部分的寄生電感,而關(guān)斷時(shí)LG則不包含電源部分的寄生電感,分析計(jì)算時(shí)要注意。
為了更直觀的理解不同驅(qū)動(dòng)電阻對(duì)GaN HEMT的影響,我們采用雙通道半橋 GaN HEMT驅(qū)動(dòng)器NSD2622N配合不同的GaN HEMT進(jìn)行了測(cè)試驗(yàn)證。下面就相關(guān)器件和驗(yàn)證結(jié)果進(jìn)行簡(jiǎn)要介紹和說(shuō)明。
02納芯微高壓半橋GaN HEMT驅(qū)動(dòng)器NSD2622N
納芯微NSD2622N是一款QFN 5X7的高壓半橋GaN HEMT驅(qū)動(dòng)器,其功能框圖和管腳定義如圖2和圖3所示。該芯片采用了成熟的電容隔離技術(shù),可以滿足高壓應(yīng)用要求。其高低邊均集成了專(zhuān)用的正負(fù)電壓調(diào)節(jié)器,其中正壓為5V~6.5V可調(diào),負(fù)壓為固定的-2.5V,為GaN HEMT提供可靠的負(fù)壓關(guān)斷;該芯片具有傳輸延時(shí)短、驅(qū)動(dòng)電流大(峰值電流分別為2A/-4A)等特點(diǎn),可以滿足不同系統(tǒng)的應(yīng)用要求;同時(shí)還具有欠壓保護(hù)、過(guò)溫保護(hù)和死區(qū)互鎖等功能,其中死區(qū)互鎖功能可以有效防止橋臂的上下管直通。此外,該驅(qū)動(dòng)器還提供一路5V的LDO輸出,為系統(tǒng)設(shè)計(jì)提供更多的便捷性。
圖2 NSD2622N功能框圖 圖3 NSD2622N Pin定義
03GaN HEMT的參數(shù)介紹
試驗(yàn)中采用了兩款具有開(kāi)爾文引腳的TOLL封裝高壓GaN HEMT進(jìn)行驗(yàn)證,型號(hào)分別為INNO65TA080BS和GS0650306LL,對(duì)應(yīng)的主要參數(shù)如下表所示。
04實(shí)驗(yàn)結(jié)果
圖4 雙脈沖測(cè)試框圖
我們采用框圖4所示的雙脈沖電路對(duì)不同驅(qū)動(dòng)電阻下GaN HEMT的柵極波形進(jìn)行測(cè)試驗(yàn)證。其中NSD2622N驅(qū)動(dòng)回路的參考地和GaN HEMT開(kāi)爾文腳連接,開(kāi)通時(shí)柵極驅(qū)動(dòng)環(huán)路總的寄生電感約為38nH,根據(jù) GaN HEMT的規(guī)格書(shū)CISS計(jì)算得到開(kāi)通時(shí)的等效電阻RG(eq)應(yīng)不小于26Ω。為了直接觀察欠阻尼對(duì)驅(qū)動(dòng)的影響,R1分別采用10Ω和27Ω進(jìn)行了對(duì)比驗(yàn)證,測(cè)試波形如下表1所示,其中藍(lán)色為GaN HEMT的漏極波形,綠色為電感LM的電流,黃色為GaN HEMT的柵極波形。
表1 調(diào)整前的開(kāi)通波形
從表1中的波形可以看到, R1為10ohm時(shí),開(kāi)通驅(qū)動(dòng)回路工作在欠阻尼模式,總線電壓50V左右時(shí),兩款GaN HEMT的柵極和漏極電壓均出現(xiàn)高頻振蕩,系統(tǒng)無(wú)法正常工作;R1為27ohm時(shí),400V電壓下,兩款GaN HEMT均能正常工作,但I(xiàn)NNO65TA080BS在開(kāi)通過(guò)程中,柵極電壓出現(xiàn)較為嚴(yán)重的高頻振蕩。究其原因,主要是由于兩款GaN HEMT內(nèi)部源極的寄生電感和開(kāi)通時(shí)的di/dt存在一定的差異,這種差異導(dǎo)致柵極高頻振鈴明顯不同。為了減小這種振蕩,進(jìn)一步增加驅(qū)動(dòng)電阻R1到33ohm或在柵源極之間并聯(lián)RC(20ohm+1nF)支路,降低GaN HEMT的開(kāi)通速度,減小開(kāi)通時(shí)的di/dt,相應(yīng)的開(kāi)通關(guān)斷波形見(jiàn)表2和表3。
表2 調(diào)整參數(shù)后的開(kāi)通波形
從表2的波形中可以看出,400V總線下,兩種方案下工作正常,柵極的高頻振蕩和過(guò)沖明顯改善。其中柵源之間并聯(lián)RC支路與單純?cè)龃驲1相比,柵極電壓更加平滑,無(wú)明顯過(guò)沖,但開(kāi)通延時(shí)更長(zhǎng),功耗會(huì)有所增加,設(shè)計(jì)時(shí)需要注意。
表3 關(guān)斷時(shí)的波形
從表3的波形可以看到,負(fù)壓關(guān)斷時(shí),柵極出現(xiàn)明顯的負(fù)壓過(guò)沖和振蕩,但沒(méi)有出現(xiàn)誤開(kāi)通。其中柵極沒(méi)有并聯(lián)RC支路時(shí),負(fù)壓過(guò)沖超過(guò)-5V;并聯(lián)RC支路后,負(fù)壓過(guò)沖幅值明顯減小。關(guān)于關(guān)斷時(shí)柵極的負(fù)壓過(guò)沖和振蕩可以通過(guò)調(diào)整電阻R2阻值或并聯(lián)RC支路的參數(shù)來(lái)進(jìn)一步優(yōu)化。
結(jié)論與建議
實(shí)驗(yàn)結(jié)果表明,合理的柵極驅(qū)動(dòng)電阻可以保證GaN HEMT正常穩(wěn)定工作,過(guò)小的驅(qū)動(dòng)電阻易造成柵極電壓出現(xiàn)振蕩,嚴(yán)重的會(huì)導(dǎo)致系統(tǒng)無(wú)法正常工作或失效。因此在設(shè)計(jì)增強(qiáng)型GaN HEMT的驅(qū)動(dòng)電路開(kāi)通時(shí),柵極驅(qū)動(dòng)電阻盡量滿足:
以此來(lái)避免開(kāi)通時(shí)柵源電壓出現(xiàn)過(guò)沖振蕩,并且計(jì)算LG時(shí),要充分考慮驅(qū)動(dòng)回路中PCB走線的寄生電感和芯片的寄生電感。同時(shí),針對(duì)不同的GaN HEMT, 柵源之間可以適當(dāng)?shù)牟⒙?lián)RC支路,有效吸收開(kāi)通關(guān)斷時(shí)的振蕩尖峰。對(duì)于高壓的GaN HMET,采用負(fù)壓關(guān)斷可以防止關(guān)斷過(guò)程中柵極誤導(dǎo)通。此外,驅(qū)動(dòng)芯片盡可能靠近GaN HEMT, 減小驅(qū)動(dòng)回路的寄生電感,同時(shí)盡量選用帶有開(kāi)爾文腳的GaN HEMT。
納芯微電子(簡(jiǎn)稱(chēng)納芯微,科創(chuàng)板股票代碼688052)是高性能高可靠性模擬及混合信號(hào)芯片公司。自2013年成立以來(lái),公司聚焦傳感器、信號(hào)鏈、電源管理三大方向,為汽車(chē)、工業(yè)、信息通訊及消費(fèi)電子等領(lǐng)域提供豐富的半導(dǎo)體產(chǎn)品及解決方案。
納芯微以『“感知”“驅(qū)動(dòng)”未來(lái),共建綠色、智能、互聯(lián)互通的“芯”世界』為使命,致力于為數(shù)字世界和現(xiàn)實(shí)世界的連接提供芯片級(jí)解決方案。
-
驅(qū)動(dòng)器
+關(guān)注
關(guān)注
54文章
8937瀏覽量
152259 -
GaN
+關(guān)注
關(guān)注
19文章
2277瀏覽量
78576 -
HEMT
+關(guān)注
關(guān)注
2文章
77瀏覽量
14232 -
納芯微
+關(guān)注
關(guān)注
2文章
346瀏覽量
15590
原文標(biāo)題:從欠阻尼到過(guò)阻尼:一文看懂GaN柵極波形如何“翻身”
文章出處:【微信號(hào):米芯微電子,微信公眾號(hào):米芯微電子】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
MOSFET漏極導(dǎo)通特性與開(kāi)關(guān)過(guò)程簡(jiǎn)析

理解功率MOSFET的開(kāi)關(guān)過(guò)程
GaN HEMT在電機(jī)設(shè)計(jì)中有以下優(yōu)點(diǎn)
GaN HEMT可靠性測(cè)試:為什么業(yè)界無(wú)法就一種測(cè)試標(biāo)準(zhǔn)達(dá)成共識(shí)
基于GaN HEMT的半橋LLC優(yōu)化設(shè)計(jì)和損耗分析
MOSFET開(kāi)關(guān)過(guò)程理解
基于漏極導(dǎo)通區(qū)MOSFET開(kāi)關(guān)過(guò)程解讀

詳細(xì)分析MOSFET開(kāi)關(guān)過(guò)程米勒效應(yīng)的影響

新的GaN技術(shù)簡(jiǎn)化了驅(qū)動(dòng)基于GaN的HEMT

微波GaN HEMT 技術(shù)面臨的挑戰(zhàn)

IGBT開(kāi)關(guān)過(guò)程分析
高速GaN E-HEMT的測(cè)量技巧方案免費(fèi)下載
BM6GD11BFJ-LB羅姆首款面向高耐壓GaN器件驅(qū)動(dòng)的隔離型柵極驅(qū)動(dòng)器IC開(kāi)始量產(chǎn)

增強(qiáng)AlN/GaN HEMT

評(píng)論