chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度分析SiC MOSFET在下一代電力電子系統(tǒng)中的應(yīng)用價(jià)值

楊茜 ? 來源:jf_33411244 ? 作者:jf_33411244 ? 2025-08-26 07:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度分析傾佳電子SiC MOSFET在下一代電力電子系統(tǒng)中的應(yīng)用價(jià)值

傾佳電子(Changer Tech)是一家專注于功率半導(dǎo)體和新能源汽車連接器的分銷商。主要服務(wù)于中國(guó)工業(yè)電源、電力電子設(shè)備和新能源汽車產(chǎn)業(yè)鏈。傾佳電子聚焦于新能源、交通電動(dòng)化和數(shù)字化轉(zhuǎn)型三大方向,并提供包括IGBT、SiC MOSFET、GaN等功率半導(dǎo)體器件以及新能源汽車連接器。?

wKgZPGis8viALC32ABc74ZEXKeQ519.png

傾佳電子楊茜致力于推動(dòng)國(guó)產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進(jìn)口IGBT模塊,助力電力電子行業(yè)自主可控和產(chǎn)業(yè)升級(jí)!

傾佳電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立功率半導(dǎo)體器件變革潮頭:

傾佳電子楊茜咬住SiC碳化硅MOSFET模塊全面取代IGBT模塊和IPM模塊的必然趨勢(shì)!

傾佳電子楊茜咬住SiC碳化硅MOSFET單管全面取代IGBT單管和大于650V的高壓硅MOSFET的必然趨勢(shì)!

傾佳電子楊茜咬住650V SiC碳化硅MOSFET單管全面取代SJ超結(jié)MOSFET和高壓GaN 器件的必然趨勢(shì)!

摘要:SiC器件如何賦能高功率、高密度和高效率的未來

本報(bào)告詳細(xì)分析了傾佳電子代理的基本半導(dǎo)體SiC MOSFET產(chǎn)品系列(B3M010C075H/B3M010C075Z和B3M013C120H/B3M013C120Z)在十大核心電力電子應(yīng)用中的應(yīng)用價(jià)值。分析表明,SiC寬禁帶半導(dǎo)體憑借其與生俱來的優(yōu)越材料特性,從根本上解決了傳統(tǒng)硅(Si)基器件在高電壓、高頻率應(yīng)用中的效率和熱管理瓶頸。具體而言,該系列產(chǎn)品通過極低的導(dǎo)通電阻和開關(guān)損耗、卓越的高溫工作能力以及先進(jìn)的封裝技術(shù),為系統(tǒng)設(shè)計(jì)帶來了革命性的優(yōu)勢(shì)。其中,采用開爾文源引腳(“Z”系列)的TO-247-4封裝,通過有效隔離柵極驅(qū)動(dòng)回路和功率回路,顯著降低了開關(guān)噪聲和損耗,即使在更高的外部柵極電阻下,其開關(guān)能耗仍遠(yuǎn)低于傳統(tǒng)封裝(“H”系列),從而實(shí)現(xiàn)了更極致的開關(guān)性能。銀燒結(jié)技術(shù)則通過降低結(jié)到殼的熱阻,確保了器件在更高功率密度下的長(zhǎng)期可靠性。在應(yīng)用層面,這些技術(shù)特性直接轉(zhuǎn)化為:

儲(chǔ)能與光伏: 1200V系列SiC器件完美匹配1500V直流母線電壓,可顯著提升PCS及工商業(yè)光伏逆變器在雙向能量流動(dòng)中的效率,并支持更高功率密度和更緊湊的系統(tǒng)設(shè)計(jì)。

電能質(zhì)量: SiC的超高速開關(guān)特性使APF和SVG能夠?qū)崿F(xiàn)更高頻率的諧波補(bǔ)償和無功調(diào)節(jié),提供更優(yōu)的電能質(zhì)量。

數(shù)據(jù)中心 750V和1200V系列SiC器件是AI算力電源及下一代HVDC供電架構(gòu)(如英偉達(dá)800V HVDC)的基石。它們通過降低損耗、提高開關(guān)頻率,使得電源模塊功率密度翻倍,同時(shí)減少了高達(dá)70%的銅纜用量,從根本上解決了傳統(tǒng)54V/48V供電方案在兆瓦級(jí)數(shù)據(jù)中心中的效率和空間難題。

本報(bào)告最后提出了詳細(xì)的器件選型指南,并展望了SiC技術(shù)在驅(qū)動(dòng)電力電子行業(yè)向更高效、更緊湊、更可靠未來轉(zhuǎn)型中的核心作用。

第一章:技術(shù)基石——SiC器件與先進(jìn)封裝的價(jià)值剖析

1.1 SiC MOSFET相較于硅器件的核心優(yōu)勢(shì)

碳化硅(SiC)作為一種寬禁帶半導(dǎo)體,其物理特性遠(yuǎn)超傳統(tǒng)硅材料,這是SiC器件實(shí)現(xiàn)卓越性能的根本原因。SiC的禁帶寬度是硅的3倍,介電擊穿電場(chǎng)強(qiáng)度是硅的10倍,熱導(dǎo)率是硅的3倍 。這些優(yōu)異的材料屬性直接轉(zhuǎn)化為SiC器件在設(shè)計(jì)和性能上的顯著優(yōu)勢(shì)。

在器件設(shè)計(jì)層面,SiC能夠?qū)崿F(xiàn)高耐壓與低導(dǎo)通電阻的共存,突破了傳統(tǒng)硅器件的固有矛盾。硅器件為了實(shí)現(xiàn)高耐壓,需要較厚的漂移層,這會(huì)顯著增加導(dǎo)通電阻。而SiC憑借其10倍于硅的擊穿電場(chǎng)強(qiáng)度,能夠使用更薄的漂移層來阻斷相同的高電壓,從而實(shí)現(xiàn)極低的單位面積導(dǎo)通電阻(RDS(on)?)。

在開關(guān)損耗方面,SiC MOSFET是多數(shù)載流子器件,與雙極型器件(如IGBT)不同,它沒有“拖尾電流”(Tail Current)問題 。這使得器件在關(guān)斷時(shí)電流能迅速下降,從而大幅降低了開關(guān)損耗。在導(dǎo)通時(shí),SiC肖特基勢(shì)壘二極管(SBD)的快速恢復(fù)特性也顯著減少了導(dǎo)通損耗 。此外,SiC的高熱導(dǎo)率使得器件能夠更有效地將熱量從結(jié)區(qū)傳導(dǎo)出去,從而支持更高的結(jié)溫( TJ?)運(yùn)行(高達(dá)175°C)和更簡(jiǎn)單、更小型的散熱系統(tǒng) 。

wKgZO2is8vmAdTpZAAtEeYZcyJI799.pngwKgZPGis8vqALoB7ABEzy41TdGw246.png

SiC的低開關(guān)損耗和高熱導(dǎo)率不僅僅提升了器件自身的效率,更引發(fā)了系統(tǒng)設(shè)計(jì)層面的連鎖反應(yīng)。低開關(guān)損耗允許系統(tǒng)工作在更高的開關(guān)頻率 ,這根據(jù)電感和電容公式,意味著可以在不犧牲性能的前提下,使用更小體積的電感和電容 。這直接減小了無源器件(如磁性元件和電容)的尺寸和重量,從而實(shí)現(xiàn)了更高的功率密度 ,使整個(gè)系統(tǒng)尺寸更小、重量更輕 。同時(shí),低損耗和高熱導(dǎo)率減少了散熱需求 ,使散熱片可以更小,甚至可能取消風(fēng)扇 ,進(jìn)一步提升了功率密度,并降低了系統(tǒng)成本和總擁有成本(TCO)。這表明SiC的價(jià)值遠(yuǎn)超器件本身,而在于其對(duì)系統(tǒng)架構(gòu)的根本性優(yōu)化。

1.2 性能再升級(jí):先進(jìn)封裝的非凡價(jià)值

wKgZO2is8vqAdlUyAAY1SSdASk8964.pngchaijie_default.pngwKgZPGis8vuALE2OAAgKsqXYEk0452.png

先進(jìn)封裝技術(shù)是SiC器件性能得以充分釋放的關(guān)鍵,其中,銀燒結(jié)和開爾文源引腳是尤為重要的兩個(gè)技術(shù)。

銀燒結(jié)技術(shù)(Silver Sintering):增強(qiáng)熱可靠性的無形價(jià)值

銀燒結(jié)是一種先進(jìn)的芯片貼裝(die-attach)技術(shù),它使用銀漿將芯片直接燒結(jié)到襯底上,取代了傳統(tǒng)焊料 。該技術(shù)提供了卓越的熱導(dǎo)率和機(jī)械性能,并能耐受更高

的工作溫度 。傾佳電子的“Z”系列產(chǎn)品明確應(yīng)用了此技術(shù),宣稱其改進(jìn)了結(jié)到殼的熱阻( Rth(j?c)?)。

雖然產(chǎn)品手冊(cè)顯示,采用銀燒結(jié)的TO-247-4封裝(B3M010C075Z, B3M013C120Z)與傳統(tǒng)封裝(B3M010C075H, B3M013C120H)的典型熱阻值同為0.20 K/W ,但這并不意味著銀燒結(jié)沒有價(jià)值。其真正的價(jià)值在于其在高功率和熱循環(huán)條件下的穩(wěn)定性和長(zhǎng)期可靠性。傳統(tǒng)焊料在大電流和頻繁的溫度變化(熱循環(huán))下容易產(chǎn)生空洞和疲勞裂紋,從而導(dǎo)致熱阻升高和器件失效。銀燒結(jié)技術(shù)通過形成致密的金屬鍵合層 ,可有效抵抗這種老化效應(yīng),確保熱阻在器件整個(gè)生命周期內(nèi)保持穩(wěn)定。因此,盡管初始熱阻可能相同,但銀燒結(jié)技術(shù)顯著提升了器件在長(zhǎng)期高負(fù)荷運(yùn)行下的可靠性和壽命,同時(shí)支持更緊湊的系統(tǒng)設(shè)計(jì)而無需犧牲性能。

開爾文源引腳(Kelvin Source):馴服寄生電感的關(guān)鍵

在半橋拓?fù)渲?,快速開關(guān)的電流會(huì)在功率回路的寄生電感(尤其是源極引線電感)上產(chǎn)生電壓降(V=L?di/dt)。這個(gè)電壓降與柵極驅(qū)動(dòng)電壓方向相反,會(huì)削弱有效的柵源電壓(VGS,effective?=Vgate_driver??IL??LS?),從而減緩開關(guān)速度,增加開關(guān)損耗,甚至在關(guān)斷時(shí)產(chǎn)生負(fù)電壓尖峰,影響器件的長(zhǎng)期可靠性 。

開爾文源引腳是解決此問題的有效方案。它是一個(gè)獨(dú)立的、連接到芯片源極的輔助引腳,將柵極驅(qū)動(dòng)回路與主功率回路分離 。柵極驅(qū)動(dòng)信號(hào)以開爾文源為參考,完全不受主功率電流在源極寄生電感上引起的電壓降的影響 。

通過對(duì)比產(chǎn)品手冊(cè)數(shù)據(jù),其價(jià)值立竿見影:

750V系列: 在T=25°C,VDC?=500V,ID?=80A的測(cè)試條件下,B3M010C075H(傳統(tǒng)封裝)使用RG(ext)?=2.2Ω時(shí),開通能量$E_{on}$為1110μJ 。而B3M010C075Z(開爾文源封裝)即使使用了更高得多的$R_{G(ext)}=10Omega$(通常用于抑制電壓尖峰),其開通能量$E_{on}$仍顯著降低至770μJ 。

1200V系列: 同樣在T=25°C,VDC?=800V,ID?=60A的條件下,B3M013C120H(傳統(tǒng)封裝)使用RG(ext)?=2.2Ω時(shí),$E_{on}$為1550μJ 。而B3M013C120Z(開爾文源封裝)使用了$R_{G(ext)}=8.2Omega$,其$E_{on}$仍降低至1110μJ 。

開爾文源封裝通過從根本上解決了寄生電感問題,使得設(shè)計(jì)者可以使用更高的外部柵極電阻來確保信號(hào)的穩(wěn)定性和魯棒性,同時(shí)仍能實(shí)現(xiàn)低損耗的高速開關(guān) 。這種設(shè)計(jì)靈活性對(duì)于需要兼顧效率、可靠性和電磁兼容性(EMC)的復(fù)雜系統(tǒng)至關(guān)重要。

第二章:傾佳電子SiC MOSFET產(chǎn)品性能剖析

2.1 產(chǎn)品性能概覽

本章節(jié)將詳細(xì)梳理傾佳電子的兩大產(chǎn)品系列:面向750V應(yīng)用的B3M010C075H/Z系列,和面向1200V應(yīng)用的B3M013C120H/Z系列。以下表格整合了來自產(chǎn)品手冊(cè)的關(guān)鍵數(shù)據(jù),以便于直接對(duì)比。

表格1:傾佳電子關(guān)鍵SiC MOSFET產(chǎn)品性能參數(shù)概覽

型號(hào)封裝VDS? (V)典型RDS(on)? (@18V) (mΩ)ID? (@25°C) (A)Rth(jc)? (K/W)典型Eon? (@25°C) (μJ)典型Eoff? (@25°C) (μJ)B3M010C075HTO-247-3750102400.201110 (@RG(ext)?=2.2Ω)490 (@RG(ext)?=2.2Ω)B3M010C075ZTO-247-4750102400.20770 (@RG(ext)?=10Ω)720 (@RG(ext)?=10Ω)B3M013C120HTO-247-3120013.51760.201550 (@RG(ext)?=2.2Ω)420 (@RG(ext)?=2.2Ω)B3M013C120ZTO-247-4120013.51760.201110 (@RG(ext)?=8.2Ω)580 (@RG(ext)?=8.2Ω)

2.2 750V系列(B3M010C075H/Z)詳細(xì)分析

wKgZO2is8vyAe0v_AATCtsFHztA003.pngwKgZPGis8vyAKoNhAAU6JVH6OsA594.png

B3M010C075H/Z系列是傾佳電子750V SiC MOSFET的代表,兩款器件均提供750V耐壓和240A(@25°C)連續(xù)電流能力,典型導(dǎo)通電阻低至10mΩ 。這使其成為中低壓大電流應(yīng)用領(lǐng)域的理想選擇。

在開關(guān)性能方面,兩款產(chǎn)品的封裝差異體現(xiàn)了其各自的價(jià)值。在VDC?=500V,ID?=80A的測(cè)試條件下,B3M010C075Z(TO-247-4)的開通能量Eon?(770μJ@RG(ext)?=10Ω)遠(yuǎn)低于B3M010C075H(TO-247-3)的Eon?(1110μJ@RG(ext)?=2.2Ω)。該數(shù)據(jù)直觀地證明了開爾文源封裝的卓越性能。即使在較高的外部柵極電阻下,Z系列的開關(guān)損耗依然更低,這對(duì)于需要在高頻下運(yùn)行并嚴(yán)格控制開關(guān)噪聲的應(yīng)用來說,是無與倫比的優(yōu)勢(shì)。

傾佳電子同時(shí)提供兩種封裝版本,旨在為工程師提供性能與成本之間的靈活選擇。對(duì)于成本敏感但對(duì)效率要求不那么極致的應(yīng)用,B3M010C075H的TO-247-3封裝提供了高性能SiC的入門級(jí)方案。而對(duì)于追求極致功率密度、最高效率和最高可靠性的前沿應(yīng)用(如AI算力電源),B3M010C075Z的先進(jìn)封裝帶來的性能提升所節(jié)省的散熱成本、占地空間和能源消耗,將使其在總擁有成本(TCO)上更具優(yōu)勢(shì)。

2.3 1200V系列(B3M013C120H/Z)詳細(xì)分析

wKgZO2is8v2AYpCOAAU-QAlXfUY678.pngwKgZPGis8v2AUGY0AATGDiTAcNA526.png

B3M013C120H/Z系列的核心價(jià)值在于其1200V的耐壓,使其能夠直接應(yīng)用于千伏級(jí)直流母線。兩款器件均提供1200V耐壓和176A(@25°C)連續(xù)電流能力,典型導(dǎo)通電阻為13.5mΩ 。

在開關(guān)性能對(duì)比方面,其趨勢(shì)與750V系列一致。在VDC?=800V,ID?=60A的測(cè)試條件下,B3M013C120Z的Eon?(1110μJ@RG(ext)?=8.2Ω)遠(yuǎn)低于B3M013C120H的Eon?(1550μJ@RG(ext)?=2.2Ω)。這一對(duì)比同樣驗(yàn)證了開爾文源封裝在更高電壓等級(jí)下的性能優(yōu)勢(shì),其對(duì)開關(guān)損耗的降低效應(yīng)在更寬的電壓范圍內(nèi)都同樣顯著。

1200V SiC器件的出現(xiàn),使得之前由IGBT主導(dǎo)的高壓應(yīng)用領(lǐng)域(>1000V)迎來了技術(shù)變革 。過去,超過1000V的電壓應(yīng)用通常依賴于IGBT,但I(xiàn)GBT的拖尾電流問題使其開關(guān)損耗在高頻下變得無法接受。SiC MOSFET則解決了這一痛點(diǎn),它將高速開關(guān)、低損耗的優(yōu)勢(shì)擴(kuò)展到了高壓領(lǐng)域,從而使得高壓系統(tǒng)可以采用更高頻率的設(shè)計(jì),直接替代笨重的IGBT方案,同時(shí)大幅提升效率和功率密度。

第三章:應(yīng)用價(jià)值深度分析:逐一擊破十大領(lǐng)域

wKgZO2is8v6Ad1bcACAvwt5XjNc677.pngwKgZPGis8v-ADKePAA4p--VtcZk227.pngwKgZO2is8wCAGpoBAAeqCEheyoQ539.pngwKgZPGis8wGAaLAVAAhvMEPjxeE453.pngwKgZO2is8wGAOBXzABE4HAbFGiY353.png

3.1 高功率轉(zhuǎn)換:儲(chǔ)能PCS與工商業(yè)光伏逆變器

儲(chǔ)能變流器(PCS)和工商業(yè)光伏逆變器是實(shí)現(xiàn)能量雙向流動(dòng)和電網(wǎng)并網(wǎng)的核心設(shè)備 。這些系統(tǒng)正向更高直流母線電壓(1000V~1500V)發(fā)展以降低傳輸損耗 。傾佳電子的B3M013C120H/Z系列1200V耐壓器件,為1000V-1500V直流母線提供了充足的電壓裕度,可安全可靠地運(yùn)行。在這些需要頻繁進(jìn)行開關(guān)操作的應(yīng)用中,SiC的低導(dǎo)通電阻和幾乎為零的關(guān)斷損耗,能夠顯著降低系統(tǒng)總損耗,提升能量轉(zhuǎn)換效率 。這對(duì)于儲(chǔ)能系統(tǒng)而言,直接意味著更低的電費(fèi)和更高的經(jīng)濟(jì)回報(bào)。此外,儲(chǔ)能PCS需要支持從電池到電網(wǎng)(逆變)和從電網(wǎng)到電池(整流)的雙向能量流動(dòng) 。SiC MOSFET的體二極管具有極低的恢復(fù)電荷( Qrr?),且沒有反向恢復(fù)損耗問題,使其在雙向開關(guān)中表現(xiàn)出色,進(jìn)一步提升了系統(tǒng)效率。

在T型三電平逆變器拓?fù)渲?,該拓?fù)湟蚱淠軌蛴行Ы档推骷?yīng)力、減小濾波電感尺寸而廣泛應(yīng)用于光伏和儲(chǔ)能領(lǐng)域 。然而,其核心挑戰(zhàn)在于開關(guān)損耗。傾佳電子的SiC MOSFET憑借其極低開關(guān)損耗的優(yōu)勢(shì),成為該拓?fù)涞睦硐腴_關(guān)管 。它能夠使三電平電路在更高頻率下工作,進(jìn)一步減小無源元件體積,實(shí)現(xiàn)更高功率密度和更優(yōu)的整體效率。

3.2 電能質(zhì)量管理:APF與SVG

有源電力濾波器(APF)和靜止無功發(fā)生器(SVG)通過高速、高頻開關(guān)來實(shí)時(shí)注入電流或調(diào)節(jié)無功功率,以校正電網(wǎng)中的諧波和功率因數(shù)問題。APF和SVG的性能直接取決于其響應(yīng)速度和開關(guān)頻率。更高的開關(guān)頻率意味著更快的響應(yīng)速度和更精確的控制。SiC MOSFET的低開關(guān)損耗特性完美契合了這一需求 ,使其能夠工作在數(shù)十kHz甚至更高的頻率,而傳統(tǒng)硅器件則難以實(shí)現(xiàn)。與光伏逆變器類似,高頻開關(guān)使得APF和SVG系統(tǒng)中的電感、電容等無源元件可以大幅小型化,從而減小了整個(gè)系統(tǒng)的體積和重量,便于部署和維護(hù)。

3.3 數(shù)據(jù)中心電源:AI算力、高頻UPS與HVDC架構(gòu)

3.3.1 英偉達(dá)800V HVDC與AI算力電源:能源革命的核心

傳統(tǒng)的AI數(shù)據(jù)中心通常采用54V直流或415V交流供電,但隨著單機(jī)架功率邁向兆瓦級(jí),這些架構(gòu)暴露出致命短板:笨重的銅纜(每兆瓦需200kg銅纜)、多級(jí)低效轉(zhuǎn)換、巨大的散熱壓力和空間瓶頸 。英偉達(dá)正引領(lǐng)行業(yè)向800V高壓直流(HVDC)供電架構(gòu)轉(zhuǎn)型,以解決上述問題 。800V HVDC通過提高電壓來降低電流,從而顯著降低 I2R損耗,減少高達(dá)70%的銅纜用量,同時(shí)將端到端能效提升5% 。

1200V SiC器件憑借其高耐壓、高效率和高功率密度特性,成為英偉達(dá)800V HVDC架構(gòu)的“基礎(chǔ)性”(foundational)使能技術(shù) 。傾佳電子的B3M013C120Z系列(1200V, 176A)完全符合此類高功率、高可靠性應(yīng)用的需求,可直接用于800V總線的AC/DC整流或DC/DC降壓模塊。

SiC在數(shù)據(jù)中心的應(yīng)用已不再是簡(jiǎn)單的效率提升,而是解決制約AI算力規(guī)?;渴鸬膽?zhàn)略瓶頸。AI算力呈指數(shù)級(jí)增長(zhǎng) ,傳統(tǒng)供電方案的物理極限正在被突破 。SiC的低損耗和高功率密度特性使800V HVDC架構(gòu)成為可能,解決了空間、銅纜和散熱難題,實(shí)現(xiàn)了兆瓦級(jí)機(jī)架的部署,從而為AI的持續(xù)發(fā)展提供了能源基石。這表明SiC技術(shù)已從器件層面的微觀優(yōu)化,上升到了產(chǎn)業(yè)生態(tài)層面的宏觀賦能。

3.3.2 數(shù)據(jù)中心“巴拿馬電源”架構(gòu):高壓DC的演進(jìn)路徑

“巴拿馬電源”架構(gòu)(Panama Power)是Facebook和谷歌等巨頭在12V向48V直流供電演進(jìn)過程中的探索 。該架構(gòu)旨在通過提高電壓來降低功率損耗,并提升功率密度。盡管英偉達(dá)正在推行800V,但48V到12V的轉(zhuǎn)換仍是當(dāng)前的主流 。同時(shí),更高電壓的中間總線(如400V HVDC)方案也已應(yīng)用多年 。傾佳電子的750V系列(B3M010C075H/Z)SiC器件,正是48V升壓、400V或800V HVDC中間總線降壓等功率轉(zhuǎn)換級(jí)的理想選擇。其低$R_{DS(on)}$和低開關(guān)損耗可確保高效率,而高頻能力則能減小電源模塊體積,滿足數(shù)據(jù)中心對(duì)高功率密度的嚴(yán)苛要求。

3.3.3 數(shù)據(jù)中心高頻UPS:從笨重到輕巧的飛躍

傳統(tǒng)數(shù)據(jù)中心UPS系統(tǒng)通常工作在較低頻率(50/60Hz),體積龐大且笨重 。SiC MOSFET所支持的高開關(guān)頻率特性,使得高頻UPS的設(shè)計(jì)成為可能。通過提高工作頻率,系統(tǒng)中的磁性元件(變壓器、電感)和電容器的體積可以大幅減小 。這不僅能將UPS的尺寸和重量減半,還能顯著提高其能量轉(zhuǎn)換效率。傾佳電子的750V/1200V系列SiC器件為高頻UPS的功率級(jí)設(shè)計(jì)提供了核心組件,從而實(shí)現(xiàn)了UPS的輕量化和高效率。

第四章:全面價(jià)值評(píng)估與實(shí)踐應(yīng)用指南

4.1 應(yīng)用領(lǐng)域與器件選型推薦

wKgZPGis8wKAXbSzAAUulOnVdp8924.pngwKgZO2is8wOADyVRAAZMF1K0ExM320.pngwKgZPGis8wOAQNzoAAxUVo8SHg0325.pngwKgZO2is8wSACiq7AAaRjOwYM4E298.pngwKgZPGis8wWAYjCxAAVjtrJjn2A383.pngwKgZO2is8wWAQGjQAAXsKYMMBC8829.pngwKgZPGis8waADww0ABXcZDzFUdA653.png

本章節(jié)將提供一份綜合性表格,將傾佳電子的SiC MOSFET產(chǎn)品系列與其最適合的應(yīng)用場(chǎng)景進(jìn)行匹配。

表格2:應(yīng)用領(lǐng)域與器件選型推薦

應(yīng)用領(lǐng)域推薦產(chǎn)品系列核心技術(shù)理由器件核心價(jià)值

儲(chǔ)能變流器 (PCS) B3M013C120Z1200V耐壓匹配1500V母線,開爾文源降低損耗,銀燒結(jié)提升可靠性。高效率、高功率密度、高可靠性

T型三電平逆變器 B3M013C120H/Z低開關(guān)損耗支持高頻工作,使能更緊湊的拓?fù)湓O(shè)計(jì)。提高效率,減小系統(tǒng)體積。APF/SVG電能質(zhì)量 B3M010C075Z超高速開關(guān)和低損耗,實(shí)現(xiàn)快速精準(zhǔn)的諧波和無功補(bǔ)償。響應(yīng)速度快,系統(tǒng)小型化。

AI算力電源 B3M010C075Z極低的開關(guān)損耗和熱阻,支持兆瓦級(jí)功率密度。功率密度高,散熱需求低。

數(shù)據(jù)中心HVDC B3M013C120Z1200V耐壓適用于800V總線,低損耗降低I2R熱損。降低銅纜成本,提升能效。

數(shù)據(jù)中心巴拿馬電源 B3M010C075Z750V耐壓覆蓋48V升壓及中間總線轉(zhuǎn)換,支持高功率密度。高效率,小型化,系統(tǒng)簡(jiǎn)化。

英偉達(dá)800V數(shù)據(jù)中心HVDC B3M013C120Z1200V耐壓,開爾文源和銀燒結(jié)確保性能和可靠性,是核心使能技術(shù)。解決制約AI擴(kuò)展的能源瓶頸。

數(shù)據(jù)中心高頻UPS B3M010C075Z高頻開關(guān)能力,大幅減小無源元件體積。減小尺寸,降低重量,提升能效。

工商業(yè)光伏逆變器 B3M013C120H/Z1200V耐壓覆蓋1500V系統(tǒng),低損耗提升能量轉(zhuǎn)換效率。效率高,長(zhǎng)期可靠,經(jīng)濟(jì)性好。

4.2 系統(tǒng)級(jí)效益與總擁有成本(TCO)分析

SiC的真正價(jià)值在于對(duì)整個(gè)系統(tǒng)帶來的革命性改變。傾佳電子的SiC MOSFET系列產(chǎn)品憑借其極低的開關(guān)和導(dǎo)通損耗,允許更高的開關(guān)頻率,從而減小了無源器件的尺寸、重量和成本 。同時(shí),減少了發(fā)熱,降低了散熱需求,進(jìn)而減小了散熱片尺寸或取消風(fēng)扇 ,實(shí)現(xiàn)了更高的功率密度和更小的系統(tǒng)尺寸,最終節(jié)省了寶貴的占地空間、運(yùn)輸成本和制造成本。

雖然SiC器件的單位成本可能高于同級(jí)別的硅器件,但從系統(tǒng)層面考量,SiC所帶來的系統(tǒng)簡(jiǎn)化、體積縮小和效率提升,將抵消甚至遠(yuǎn)超其初始成本。以AI數(shù)據(jù)中心為例,SiC的使用可以減少高達(dá)70%的銅纜用量,降低散熱費(fèi)用,并節(jié)省寶貴的機(jī)架空間 。這些節(jié)省的開支遠(yuǎn)超過SiC器件本身的成本。因此,決策者需要從傳統(tǒng)的“器件成本”思維轉(zhuǎn)變?yōu)椤跋到y(tǒng)總擁有成本”思維,才能真正理解SiC的巨大價(jià)值。

4.3 選型指南與未來展望

對(duì)于成本敏感但對(duì)性能有一定要求的設(shè)計(jì),傳統(tǒng)TO-247-3封裝的H系列提供了極佳的平衡。而對(duì)于追求極致效率、最高功率密度和長(zhǎng)期可靠性的高端應(yīng)用,如AI算力電源和英偉達(dá)800V HVDC,強(qiáng)烈推薦采用開爾文源和銀燒結(jié)技術(shù)的Z系列產(chǎn)品。其所帶來的性能優(yōu)勢(shì)將直接轉(zhuǎn)化為更高的系統(tǒng)效率和更穩(wěn)健的長(zhǎng)期運(yùn)行。

隨著AI、儲(chǔ)能、電動(dòng)汽車等高功率應(yīng)用的爆發(fā)式增長(zhǎng),對(duì)高效、高密度電源轉(zhuǎn)換的需求將持續(xù)擴(kuò)大。SiC作為下一代電力電子系統(tǒng)的核心技術(shù),其市場(chǎng)滲透率將持續(xù)提高。傾佳電子憑借其在SiC MOSFET產(chǎn)品上的全面布局,特別是對(duì)先進(jìn)封裝技術(shù)的應(yīng)用,已站在了這一技術(shù)革命的前沿,為未來的電力電子應(yīng)用提供了堅(jiān)實(shí)的技術(shù)支撐。

深圳市傾佳電子有限公司(簡(jiǎn)稱“傾佳電子”)是聚焦新能源與電力電子變革的核心推動(dòng)者:

傾佳電子成立于2018年,總部位于深圳福田區(qū),定位于功率半導(dǎo)體與新能源汽車連接器的專業(yè)分銷商,業(yè)務(wù)聚焦三大方向:

新能源:覆蓋光伏、儲(chǔ)能、充電基礎(chǔ)設(shè)施;

交通電動(dòng)化:服務(wù)新能源汽車三電系統(tǒng)(電控、電池、電機(jī))及高壓平臺(tái)升級(jí);

數(shù)字化轉(zhuǎn)型:支持AI算力電源、數(shù)據(jù)中心等新型電力電子應(yīng)用。

公司以“推動(dòng)國(guó)產(chǎn)SiC替代進(jìn)口、加速能源低碳轉(zhuǎn)型”為使命,響應(yīng)國(guó)家“雙碳”政策(碳達(dá)峰、碳中和),致力于降低電力電子系統(tǒng)能耗。

需求SiC碳化硅MOSFET單管及功率模塊,配套驅(qū)動(dòng)板及驅(qū)動(dòng)IC,請(qǐng)搜索傾佳電子楊茜

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 碳化硅
    +關(guān)注

    關(guān)注

    26

    文章

    3396

    瀏覽量

    51961
  • SiC MOSFET
    +關(guān)注

    關(guān)注

    1

    文章

    143

    瀏覽量

    6763
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    電力電子系統(tǒng)的無功功率機(jī)制與碳化硅(SiC)技術(shù)在高級(jí)無功補(bǔ)償應(yīng)用的戰(zhàn)略價(jià)值

    深度解析電力電子系統(tǒng)的無功功率機(jī)制與碳化硅(SiC)技術(shù)在高級(jí)無功補(bǔ)償應(yīng)用的戰(zhàn)略
    的頭像 發(fā)表于 01-17 12:50 ?22次閱讀
    <b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b><b class='flag-5'>中</b>的無功功率機(jī)制與碳化硅(<b class='flag-5'>SiC</b>)技術(shù)在高級(jí)無功補(bǔ)償應(yīng)用<b class='flag-5'>中</b>的戰(zhàn)略<b class='flag-5'>價(jià)值</b>

    英偉達(dá) (NVIDIA) GPU 供電系統(tǒng) DC/DC 架構(gòu)深度研究與 SiC MOSFET 應(yīng)用價(jià)值分析報(bào)告

    英偉達(dá) (NVIDIA) GPU 供電系統(tǒng) DC/DC 架構(gòu)深度研究與 SiC MOSFET 應(yīng)用價(jià)值
    的頭像 發(fā)表于 01-05 08:40 ?146次閱讀
    英偉達(dá) (NVIDIA) GPU 供電<b class='flag-5'>系統(tǒng)</b> DC/DC 架構(gòu)<b class='flag-5'>深度</b>研究與 <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 應(yīng)用<b class='flag-5'>價(jià)值</b><b class='flag-5'>分析</b>報(bào)告

    英飛凌下一代電磁閥驅(qū)動(dòng)器評(píng)估套件使用指南

    英飛凌下一代電磁閥驅(qū)動(dòng)器評(píng)估套件使用指南 、前言 在電子工程師的日常工作,電磁閥驅(qū)動(dòng)器的評(píng)估和開發(fā)是項(xiàng)重要任務(wù)。英飛凌推出的
    的頭像 發(fā)表于 12-21 11:30 ?688次閱讀

    SiC功率模塊時(shí)代的電力電子系統(tǒng)共模電流產(chǎn)生的機(jī)理和抑制方法

    SiC功率模塊時(shí)代的電力電子系統(tǒng)共模電流產(chǎn)生的機(jī)理和抑制方法 傾佳電子(Changer Tech)是家專注于功率半導(dǎo)體和新能源汽車連接器的
    的頭像 發(fā)表于 12-15 15:44 ?368次閱讀
    <b class='flag-5'>SiC</b>功率模塊時(shí)代的<b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b>共模電流產(chǎn)生的機(jī)理和抑制方法

    傾佳電子先進(jìn)拓?fù)渑cSiC碳化硅技術(shù)的融合:構(gòu)建下一代高性能便攜儲(chǔ)能系統(tǒng)

    傾佳電子先進(jìn)拓?fù)渑cSiC碳化硅技術(shù)的融合:構(gòu)建下一代高性能便攜儲(chǔ)能系統(tǒng) 傾佳電子(Changer Tech)是
    的頭像 發(fā)表于 11-04 10:25 ?285次閱讀
    傾佳<b class='flag-5'>電子</b>先進(jìn)拓?fù)渑c<b class='flag-5'>SiC</b>碳化硅技術(shù)的融合:構(gòu)建<b class='flag-5'>下一代</b>高性能便攜儲(chǔ)能<b class='flag-5'>系統(tǒng)</b>

    構(gòu)建下一代電力架構(gòu):傾佳電子面向AI服務(wù)器的全數(shù)字雙輸入碳化硅電源深度解析

    構(gòu)建下一代電力架構(gòu):傾佳電子面向AI服務(wù)器的全數(shù)字雙輸入碳化硅電源深度解析 傾佳電子(Changer Tech)是家專注于功率半導(dǎo)體和新能
    的頭像 發(fā)表于 10-20 19:58 ?516次閱讀
    構(gòu)建<b class='flag-5'>下一代電力</b>架構(gòu):傾佳<b class='flag-5'>電子</b>面向AI服務(wù)器的全數(shù)字雙輸入碳化硅電源<b class='flag-5'>深度</b>解析

    固態(tài)繼任:傾佳電子SiC MOSFET為何是現(xiàn)代電力系統(tǒng)機(jī)械繼電器的理想替代品的分析報(bào)告

    固態(tài)繼任:傾佳電子SiC MOSFET為何是現(xiàn)代電力系統(tǒng)機(jī)械繼電器的理想替代品的分析報(bào)告 傾佳
    的頭像 發(fā)表于 10-19 13:31 ?385次閱讀
    固態(tài)繼任:傾佳<b class='flag-5'>電子</b><b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>為何是現(xiàn)<b class='flag-5'>代電力系統(tǒng)</b><b class='flag-5'>中</b>機(jī)械繼電器的理想替代品的<b class='flag-5'>分析</b>報(bào)告

    傾佳電子1400V碳化硅(SiC)MOSFET賦能新一代電力電子系統(tǒng)

    傾佳電子1400V碳化硅(SiC)MOSFET賦能新一代電力電子系統(tǒng) 引言:迎接1000-1100V系統(tǒng)
    的頭像 發(fā)表于 10-11 18:28 ?765次閱讀
    傾佳<b class='flag-5'>電子</b>1400V碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b>賦能新<b class='flag-5'>一代電力</b><b class='flag-5'>電子系統(tǒng)</b>

    傾佳電力電子系統(tǒng)中共模電壓和共模電流的深度研究及SiC功率器件的抑制貢獻(xiàn)

    傾佳電力電子系統(tǒng)中共模電壓和共模電流的深度研究及SiC功率器件的抑制貢獻(xiàn) 傾佳電子(Changer Tech)是
    的頭像 發(fā)表于 09-29 21:02 ?7166次閱讀
    傾佳<b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b>中共模電壓和共模電流的<b class='flag-5'>深度</b>研究及<b class='flag-5'>SiC</b>功率器件的抑制貢獻(xiàn)

    傾佳電子深度洞察AIDC電源系統(tǒng)技術(shù)演進(jìn)與SiC MOSFET應(yīng)用價(jià)值分析

    傾佳電子深度洞察AIDC電源系統(tǒng)技術(shù)演進(jìn)與SiC MOSFET應(yīng)用價(jià)值
    的頭像 發(fā)表于 09-09 21:07 ?1154次閱讀
    傾佳<b class='flag-5'>電子</b><b class='flag-5'>深度</b>洞察AIDC電源<b class='flag-5'>系統(tǒng)</b>技術(shù)演進(jìn)與<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>應(yīng)用<b class='flag-5'>價(jià)值</b><b class='flag-5'>分析</b>

    SiC功率模塊在電力電子系統(tǒng)的應(yīng)用與優(yōu)勢(shì)

    SiC功率模塊在電力電子系統(tǒng)的應(yīng)用與優(yōu)勢(shì) SiC(碳化硅)功率模塊憑借其優(yōu)異的物理特性,正在革命性地提升
    的頭像 發(fā)表于 07-23 09:57 ?952次閱讀
    <b class='flag-5'>SiC</b>功率模塊在<b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b><b class='flag-5'>中</b>的應(yīng)用與優(yōu)勢(shì)

    顛覆能效極限!BASiC SiC MOSFET工業(yè)模塊——重新定義高端電力電子系統(tǒng)

    。傾佳電子攜手基本股份BASiC Semiconductor,為您帶來全系高性能SiC MOSFET工業(yè)模塊解決方案,以更低損耗、更高頻效、極致可靠三大核心優(yōu)勢(shì),助力客戶搶占新一代電力
    的頭像 發(fā)表于 07-08 06:29 ?563次閱讀
    顛覆能效極限!BASiC <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>工業(yè)模塊——重新定義高端<b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b>

    突破性能邊界:基本半導(dǎo)體B3M010C075Z SiC MOSFET技術(shù)解析與應(yīng)用前景

    取代傳統(tǒng)硅基器件?;景雽?dǎo)體推出的B3M010C075Z750V SiC MOSFET,通過創(chuàng)新設(shè)計(jì)與先進(jìn)工藝,實(shí)現(xiàn)了功率密度與能效的跨越式突破,為下一代電力轉(zhuǎn)換系統(tǒng)樹立了新標(biāo)桿。
    的頭像 發(fā)表于 06-16 15:20 ?759次閱讀
    突破性能邊界:基本半導(dǎo)體B3M010C075Z <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>技術(shù)解析與應(yīng)用前景

    34mm碳化硅(SiC)功率模塊應(yīng)用在電力電子系統(tǒng)的推薦方案

    34mm碳化硅(SiC)功率模塊應(yīng)用在電力電子系統(tǒng)推薦方案 傾佳電子(Changer Tech)-專業(yè)汽車連接器及功率半導(dǎo)體(SiC碳化硅
    的頭像 發(fā)表于 05-04 13:23 ?886次閱讀
    34mm碳化硅(<b class='flag-5'>SiC</b>)功率模塊應(yīng)用在<b class='flag-5'>電力</b><b class='flag-5'>電子系統(tǒng)</b>的推薦方案

    西門子EDA新一代平臺(tái)版本升級(jí)

    電子系統(tǒng)設(shè)計(jì)領(lǐng)域迎來重要革新:西門子 EDA 下一代電子系統(tǒng)設(shè)計(jì)平臺(tái) Xpedition 2409 與 HyperLynx 2409 新版本正式發(fā)布,持續(xù)升級(jí)全系列解決方案,助力工程師實(shí)現(xiàn)效率躍升。
    的頭像 發(fā)表于 02-27 16:06 ?1061次閱讀