chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

英特爾利用深度神經(jīng)網(wǎng)絡(luò)來(lái)加速高內(nèi)涵篩選

7GLE_Intelzhiin ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-06-22 16:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在近日舉行的英特爾人工智能開發(fā)者大會(huì)上,英特爾公司全球副總裁兼人工智能產(chǎn)品事業(yè)部總經(jīng)理Naveen Rao提到,英特爾正在與諾華合作,利用深度神經(jīng)網(wǎng)絡(luò)來(lái)加速高內(nèi)涵篩選——這是早期藥品研發(fā)的關(guān)鍵因素。雙方的合作把訓(xùn)練圖片分析模型的時(shí)間從11個(gè)小時(shí)縮短到了31分鐘——改善了20多倍。

細(xì)胞表型的高內(nèi)涵篩選是支持早期藥品研發(fā)的關(guān)鍵工具,“高內(nèi)涵”一詞是指利用傳統(tǒng)圖像處理技術(shù)從圖像中提取的豐富數(shù)據(jù)集,這些數(shù)據(jù)集由數(shù)千個(gè)預(yù)定義特性(如大小、形狀、肌理等)構(gòu)成。通過(guò)高內(nèi)涵篩選可以分析顯微鏡圖像,進(jìn)而研究數(shù)千種基因或化學(xué)治療方法對(duì)不同細(xì)胞的培養(yǎng)效果。

深度學(xué)習(xí)有望做到的是從數(shù)據(jù)中“自動(dòng)”學(xué)習(xí)如何通過(guò)相關(guān)圖像特征將一種治療方法與另一種治療方法區(qū)分開。英特爾與諾華的生物學(xué)家和數(shù)據(jù)科學(xué)家希望通過(guò)利用深度神經(jīng)網(wǎng)絡(luò)加速技術(shù),提高高內(nèi)涵圖像篩選的速度。在雙方的合作中,團(tuán)隊(duì)并非通過(guò)獨(dú)立的步驟鑒別出圖像中的各個(gè)細(xì)胞,而是聚焦于完整的顯微鏡圖像,但完整的顯微鏡圖像遠(yuǎn)遠(yuǎn)大于深度學(xué)習(xí)數(shù)據(jù)集里的圖像,例如英特爾與諾華合作評(píng)估中使用的圖片就比典型的動(dòng)物、物體和場(chǎng)景數(shù)據(jù)集ImageNet*中的圖像大26倍以上。

深度卷積神經(jīng)網(wǎng)絡(luò)模型在分析顯微鏡圖像時(shí)可同時(shí)分析一張圖像中的幾百萬(wàn)個(gè)像素或者一個(gè)模型中的幾百萬(wàn)個(gè)參數(shù),甚至還能同時(shí)分析數(shù)千個(gè)訓(xùn)練圖像,這些構(gòu)成了很高的計(jì)算工作量,即使采用最先進(jìn)的計(jì)算性能也無(wú)法有足夠時(shí)間對(duì)DNN模型展開深入研究。為了解決這一挑戰(zhàn),英特爾聯(lián)手諾華利用深度神經(jīng)網(wǎng)絡(luò)加速技術(shù)處理多個(gè)圖像,大大縮減了時(shí)間并提高工作效率,同時(shí)讓模型從圖像特性中獲得更加豐富的洞察。具體講就是通過(guò)使用Broad Bioimage Benchmark Collection* 021 (BBBC-021) 數(shù)據(jù)集,英特爾與諾華合作團(tuán)隊(duì)將總處理時(shí)間縮短至31分鐘,準(zhǔn)確率超過(guò)99%;利用深度學(xué)習(xí)訓(xùn)練中的數(shù)據(jù)并行性原則,并充分依靠服務(wù)器平臺(tái)上的大存儲(chǔ)支持,通過(guò)了32個(gè)TensorFlow* workers,實(shí)現(xiàn)了每秒處理120個(gè)3.9兆像素圖像的成果。

與諾華的合作,是英特爾通過(guò)企業(yè)級(jí)的解決方案為人工智能的應(yīng)用與企業(yè)部署提供最廣泛的計(jì)算力合作案例之一。在未來(lái),雖然監(jiān)督學(xué)習(xí)對(duì)于加快圖像分類、縮短獲得洞察的時(shí)間至關(guān)重要,但卻仍需要依賴大量專家標(biāo)記的數(shù)據(jù)集來(lái)訓(xùn)練模型,建立此類數(shù)據(jù)集所需的時(shí)間和工作量往往超出現(xiàn)實(shí)條件。無(wú)監(jiān)督學(xué)習(xí)或許可以應(yīng)用于無(wú)標(biāo)記的顯微鏡圖像,有望在細(xì)胞生物學(xué)領(lǐng)域發(fā)現(xiàn)新洞察,有助于人類藥物研發(fā)的進(jìn)一步發(fā)展。

[1] 20倍是通過(guò)從單節(jié)點(diǎn)系統(tǒng)擴(kuò)展到8插槽集群實(shí)現(xiàn)的21.7倍速度提升。

8插槽集群節(jié)點(diǎn)配置:CPU:英特爾?至強(qiáng)? 6148處理器(2.4GHz);核心數(shù):40;插槽數(shù):2;超線程:?jiǎn)⒂茫粌?nèi)存/節(jié)點(diǎn):192GB,2666MHz;網(wǎng)卡:英特爾? Omni-Path Host Fabric Interface (英特爾? OP HFI);TensorFlow:v1.7.0;Horovod:0.12.1;OpenMPI:3.0.0;集群:ToR Switch:英特爾? Omni-Path Switch

單節(jié)點(diǎn)配置:CPU:英特爾?至強(qiáng)?融核處理器7290F;192GB DDR4 RAM;1x 1.6TB 英特爾? SSD DC S3610系列SC2BX016T4;1x 480GB 英特爾? SSD DC S3520系列SC2BB480G7;英特爾? MKL 2017/DAAL/Intel Caffe

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10244

    瀏覽量

    178133
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106064

原文標(biāo)題:利用深度神經(jīng)網(wǎng)絡(luò),英特爾加速藥物研發(fā)新突破

文章出處:【微信號(hào):Intelzhiin,微信公眾號(hào):知IN】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

    問(wèn)題。因此,并行計(jì)算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實(shí)際應(yīng)用中對(duì)快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡(luò)并行
    的頭像 發(fā)表于 09-17 13:31 ?727次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計(jì)算與<b class='flag-5'>加速</b>技術(shù)

    英特爾Gaudi 2E AI加速器為DeepSeek-V3.1提供加速支持

    英特爾? Gaudi 2EAI加速器現(xiàn)已為DeepSeek-V3.1提供深度優(yōu)化支持。憑借出色的性能和成本效益,英特爾Gaudi 2E以更低的投入、更高的效率,實(shí)現(xiàn)從模型訓(xùn)練的
    的頭像 發(fā)表于 08-26 19:18 ?2311次閱讀
    <b class='flag-5'>英特爾</b>Gaudi 2E AI<b class='flag-5'>加速</b>器為DeepSeek-V3.1提供<b class='flag-5'>加速</b>支持

    新思科技與英特爾在EDA和IP領(lǐng)域展開深度合作

    近日,在英特爾代工Direct Connect 2025上,新思科技宣布與英特爾在EDA和IP領(lǐng)域展開深度合作,包括利用其通過(guò)認(rèn)證的AI驅(qū)動(dòng)數(shù)字和模擬設(shè)計(jì)流程支持
    的頭像 發(fā)表于 05-22 15:35 ?591次閱讀

    英特爾發(fā)布全新GPU,AI和工作站迎來(lái)新選擇

    英特爾推出面向準(zhǔn)專業(yè)用戶和AI開發(fā)者的英特爾銳炫Pro GPU系列,發(fā)布英特爾? Gaudi 3 AI加速器機(jī)架級(jí)和PCIe部署方案 ? 2025 年 5 月 19 日,北京 ——今日
    發(fā)表于 05-20 11:03 ?1594次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1038次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    深度學(xué)習(xí)入門:簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?710次閱讀

    英特爾計(jì)劃分拆RealSense深度攝像頭業(yè)務(wù)

    近日,英特爾公司向外界證實(shí)了一項(xiàng)重要戰(zhàn)略決策:計(jì)劃在2025年年中之前,將其RealSense深度攝像頭業(yè)務(wù)分拆為一家獨(dú)立公司。這一舉措標(biāo)志著英特爾深度攝像頭技術(shù)領(lǐng)域邁出了新的步伐。
    的頭像 發(fā)表于 01-14 13:49 ?659次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1783次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    英特爾推出全新英特爾銳炫B系列顯卡

    備受玩家青睞的價(jià)格提供卓越的性能與價(jià)值1,很好地滿足現(xiàn)代游戲需求,并為AI工作負(fù)載提供加速。其配備的英特爾Xe矩陣計(jì)算引擎(XMX),為新推出的XeSS 2提供強(qiáng)大支持。XeSS 2的三項(xiàng)核心技術(shù)協(xié)同工作,共同提高性能表現(xiàn)、增強(qiáng)視覺(jué)流暢性并加快響應(yīng)速度。 “ ? 全新
    的頭像 發(fā)表于 12-07 10:16 ?1735次閱讀
    <b class='flag-5'>英特爾</b>推出全新<b class='flag-5'>英特爾</b>銳炫B系列顯卡

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2248次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?1071次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1794次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長(zhǎng)序列時(shí)存在梯度消失或梯度爆炸的問(wèn)題。為了解決這一問(wèn)題,LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1519次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí),或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請(qǐng)繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-01 08:06 ?843次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101