chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

入了解SiC MOSFET實現(xiàn)建議和解決方案示例

工程師兵營 ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-07-04 09:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

對于電網(wǎng)轉(zhuǎn)換、電動汽車或家用電器等高功率應(yīng)用,碳化硅 (SiC) MOSFET 與同等的硅 IGBT 相比具有許多優(yōu)勢,包括更快的開關(guān)速度、更高的電流密度和更低的導(dǎo)通電阻。但是,SiC MOSFET 也存在自己的一系列問題,包括穩(wěn)健性、可靠性、高頻應(yīng)用中的瞬時振蕩,以及故障處理等。

對設(shè)計人員而言,成功應(yīng)用 SiC MOSFET 的關(guān)鍵在于深入了解 SiC MOSFET 獨有的工作特征及其對設(shè)計的影響。本文將提供此類見解,以及實現(xiàn)建議和解決方案示例。

為何使用 SiC MOSFET

要充分認識 SiC MOSFET 的功能,一種有用的方法就是將它們與同等的硅器件進行比較。SiC 器件可以阻斷的電壓是硅器件的 10 倍,具有更高的電流密度,能夠以 10 倍的更快速度在導(dǎo)通和關(guān)斷狀態(tài)之間轉(zhuǎn)換,并且具有更低的導(dǎo)通電阻。例如,900 伏 SiC MOSFET 可以在 1/35 大小的芯片內(nèi)提供與 Si MOSFET 相同的導(dǎo)通電阻(圖 1)。

SiC MOSFET 具有更低的導(dǎo)通電阻和更高的電壓耐受能力圖片

圖 1:SiC MOSFET(右側(cè))與硅器件相比,具有更低的導(dǎo)通電阻和更高的電壓耐受能力。(圖片來源:ROHM Semiconductor)

標準硅 MOSFET 在高至 150°C 的溫度條件下工作時,RDS(on) 導(dǎo)通電阻要高出 25°C 時典型值的兩倍。采用正確封裝時,SiC MOSFET 可獲得 200°C 甚至更高的額定溫度。SiC MOSFET 的超高工作溫度也簡化了熱管理,從而減小了印刷電路板的外形尺寸,并提高了系統(tǒng)穩(wěn)定性。

設(shè)計挑戰(zhàn)

然而,SiC MOSFET 技術(shù)可能是一把雙刃劍,在帶來改進的同時,也帶來了設(shè)計挑戰(zhàn)。在諸多挑戰(zhàn)中,工程師必須確保:

  • 以最優(yōu)方式驅(qū)動 SiC MOSFET,最大限度降低傳導(dǎo)和開關(guān)損耗。

  • 最大限度降低柵極損耗。柵極驅(qū)動器需要能夠以最小的輸出阻抗和高電流能力,提供 +20 伏和 -2 伏到 -5 伏負偏壓。

  • 尤其當開關(guān)速度較快時,必須特別留意系統(tǒng)的寄生效應(yīng)。具體而言,這指的是硅模塊周圍通常存在的電感和電容之外的雜散電感和電容。

  • 需要認識到,SiC MOSFET 的輸出開關(guān)電流變化率 (di/dt) 遠高于 Si MOSFET。這可能增加直流總線的瞬時振蕩、電磁干擾以及輸出級損耗。高開關(guān)速度還可能導(dǎo)致電壓過沖。

  • 滿足高電壓應(yīng)用的可靠性和故障處理性能要求。

下面我們來了解一下存在的主要問題以及如何解決這些問題。

傳導(dǎo)和開關(guān)損耗

影響開關(guān)行為的主要方面包括關(guān)斷能量、導(dǎo)通能量、所謂的米勒效應(yīng),以及柵極驅(qū)動電流要求。

關(guān)斷能量 (Eoff) 取決于柵極電阻 (RG) 和 RGS(off)(柵源電壓,關(guān)閉)。通過降低 RG 或在關(guān)閉時間內(nèi)使用負柵極偏壓,可以增加?xùn)艠O的漏電流,從而降低 Eoff。為此,SiC MOSFET 的驅(qū)動器 IC 應(yīng)該能夠管理較小的負柵極電壓,以便提供安全、穩(wěn)定的關(guān)斷狀態(tài)。

導(dǎo)通能量通常是指將 MOSFET 寄生電容充電至實現(xiàn)較低 RDS(on) 所需的電壓電平的過程。與關(guān)斷能量一樣,通過減小 RG 也能提升導(dǎo)通能量。Eon 與 Rg 的對比圖表顯示,當柵極電阻從 10 Ω 變?yōu)?1 Ω 時,導(dǎo)通能量幾乎降低了 40%(圖 2)。

Eon 與 R<sub>G</sub> 的對比圖;導(dǎo)通性能pIYBAFs8G6uAQMbFAAAqNrdRslU088.jpg?ts=a28cea6b-db1b-4a54-98ee-3d905fb26235&la=zh-CN-RMB" style="text-align:center;" title="Eon vs. Rg; turn-on performance" />

圖 2:Eon 與 Rg 的對比;通過降低柵極電阻 (Rg) 改善導(dǎo)通性能。(圖片來源:STMicroelectronics)

米勒效應(yīng)

如果橫跨柵極電阻器的壓降超過了半橋轉(zhuǎn)換器的上 MOSFET 的閾值電壓,則會發(fā)生稱為“米勒導(dǎo)通”或“米勒效應(yīng)”的寄生導(dǎo)通。當存在米勒導(dǎo)通時,反向恢復(fù)能量 (Err) 可能會嚴重影響全局開關(guān)損耗。

為應(yīng)對這一點,SiC MOSFET 驅(qū)動器可以加入一項米勒箝位保護功能,以控制半橋配置中功率級開關(guān)期間的米勒電流(圖 3)。

STMicroelectronics 米勒箝位保護連接原理圖

圖 3:米勒箝位是一種眾所周知的方法,可用于避免因寄生 dVds/dt 觸發(fā)的導(dǎo)通。圖中顯示的原理圖是米勒箝位保護連接的一個示例。(圖片來源:STMicroelectronics)

電源開關(guān)處于“關(guān)閉”狀態(tài)時,驅(qū)動器將會工作,以免當同一支路上的另一個開關(guān)處于導(dǎo)通狀態(tài)時,因柵極電容而可能出現(xiàn)感應(yīng)導(dǎo)通現(xiàn)象。

減小導(dǎo)通電阻

ROHM 的 SCT3030KLGC11 是一種良好的低導(dǎo)通電阻 SiC MOSFET,作為第三代器件,它在 1,200 伏電壓下工作,具有 30 毫歐姆 (mΩ) 的導(dǎo)通電阻。它使用專有的溝槽式柵極結(jié)構(gòu),與之前的平面式 SiC MOSFET 相比,將輸入電容減小了 35%,將導(dǎo)通電阻減小了 50%。

溝槽式柵極指的是一種結(jié)構(gòu),其中的 MOSFET 柵極是在芯片表面構(gòu)建的一個凹槽的側(cè)壁上成形的。ROHM 的測試表明,第三代解決方案可以在約 50 納秒 (ns) 的時間內(nèi)從 0 伏驟升至 800 伏。

但設(shè)計人員需要了解一項參數(shù)權(quán)衡,即新器件的短路電流耐受能力相對較低。這是因為,與上一代器件相比,獲得給定導(dǎo)通電阻所需的硅量已幾乎減半。較小的硅片在短路狀態(tài)下沒有足夠的物質(zhì)量來承受較長時間的短路電流。

SiC MOSFET 的柵極驅(qū)動要求

SiC MOSFET 需要的柵極電壓擺動高于標準超級結(jié) MOSFET 和 IGBT。以 STMicroelectronics 的 SCT30N120 為例,它是一個 1200 伏、80 mΩ(典型值)SiC MOSFET,建議采用較高的(+20 伏)正偏壓柵極驅(qū)動,以便最大限度減小損耗。不建議在正方向使用超過 +20 伏的電壓驅(qū)動該 SiC MOSFET,因為 VGS 的最大絕對額定值為 +25 伏。該電壓可以低至 +18 伏,但這會導(dǎo)致 RDS(ON) 增大約 25%(20 A、25°C 時)。

根據(jù)具體應(yīng)用,還可能需要 -2 伏至 -6 伏范圍的負“關(guān)斷”柵極電壓。驅(qū)動器的最大供電電壓額定值必須介于 22 伏與 28 伏之間,具體取決于是否應(yīng)用了負“關(guān)斷”電壓。鑒于器件開關(guān)所需的柵極電荷較低,較高的電壓擺動不會影響所需的柵極驅(qū)動功率。

可使用相關(guān)規(guī)格書中所列的柵極電荷,輕松計算導(dǎo)通或關(guān)斷 MOSFET 所需的柵極電流。對于 SCT30N120,VDD = 800 V、ID = 20 A、VGS = -2 至 20 V 條件下的總柵極電荷 (Qg) 通常為 106 毫微庫侖 (nC)。要實現(xiàn)最快的開關(guān)速度,驅(qū)動器必須能夠拉出或灌入在 RG = 1Ω、VGS(on) = +20 V 和 VGS(off) = -2 V 條件下測得的柵極峰值電流。這時,兩種情形(灌入/拉出)下的峰值柵極電流均低于 2 A。

最大限度減少寄生效應(yīng)和電磁干擾

器件的高速開關(guān)瞬態(tài)為電路中存在的寄生電感和電容提供了額外的能量。這些寄生效應(yīng)形成的諧振電路可能導(dǎo)致電壓和電流過沖及瞬時振蕩。當一個 MOSFET 處于導(dǎo)通狀態(tài),而另一個 MOSFET 正承載續(xù)流電流時,將會出現(xiàn)電壓過沖,這時即使幾毫微亨的雜散電感所產(chǎn)生的電壓降也可能導(dǎo)致問題。

在硅 IGBT 中,電流拖尾造成了一定數(shù)量的關(guān)斷緩沖,從而減少了電壓過沖和瞬時振蕩。SiC MOSFET 沒有電流拖尾,因而漏極電壓過沖和寄生瞬時振蕩明顯高得多。

設(shè)計人員可通過以下方法降低這類寄生效應(yīng):

  • 最大限度縮短導(dǎo)線長度

  • 將柵極驅(qū)動器放在盡可能靠近 MOSFET 的位置,并使用疊接式導(dǎo)線幾何形狀而不是并排(共平面)幾何形狀

高速開關(guān)的另一個結(jié)果是增加了電磁干擾 (EMI)。這是因為在 MOSFET 的柵極電容充放電以及高速開關(guān)負載電流時,存在較高的變化率 (di/dt) 值。如果需要滿足 EMI 標準,則減小在高頻應(yīng)用中開關(guān) SiC MOSFET 時的瞬時振蕩非常重要。

可靠性和故障處理

由于在 SiC 功率 MOSFET 中使用氧化物作為柵極絕緣層,該氧化物對器件的可靠性有直接的影響。在提高開關(guān)速度時,如果柵極氧化物承受的電壓超過了建議的工作值,則可能導(dǎo)致永久性故障。

早期的 SiC MOSFET 中存在這一問題,但有充分的證據(jù)表明,此問題現(xiàn)在已經(jīng)得到了有效的控制。

例如,Cree(Wolfspeed 旗下部門)的氧化物層與 Si MOSFET1 的氧化物層同樣可靠。假定柵極氧化物上的應(yīng)力保持在容許的水平以內(nèi),最新的柵極氧化物技術(shù)可以在高溫工作時實現(xiàn)長期可靠性。據(jù) Wolfspeed 稱,用于提供 20 伏電壓的柵極,經(jīng)評估具有一千萬小時的使用壽命。

SiC MOSFET 的短路耐受時間通常約為 3 毫秒 (μs),因此要實現(xiàn)可靠的 SiC MOSFET 操作和較長的使用壽命,快速檢測和快速關(guān)斷功能不可或缺。此外,重復(fù)的短路放電可能增大 SiC MOSFET 的導(dǎo)通電阻。

使用入門

設(shè)計人員可使用多種工具來幫助他們熟悉 SiC MOSFET。Cree 的 KIT8020CRD8FF1217P-1 SiC MOSFET 評估套件(圖 4)是其中值得研究的工具之一。它旨在演示所有采用標準 TO-247 封裝的 Cree 1200 伏 MOSFET 和肖特基二極管的性能。其中包含了需要的全部功率級零件,可以快速組裝一個基于 Cree SiC MOSFET 和二極管的電源轉(zhuǎn)換器,并在半橋電路中搭配使用 SiC 器件。

它可以配置為不同的電源轉(zhuǎn)換拓撲(例如降壓或升壓),輕松獲取用于測量(包括 VGS、VDS 和 IDS)的關(guān)鍵測試點。

Cree KIT8020CRD8FF1217P-1 SiC MOSFET 評估套件的總體框圖

圖 4:Cree KIT8020CRD8FF1217P-1 SiC MOSFET 評估套件的總體框圖。該評估板上采用帶有電氣隔離的柵極驅(qū)動塊來驅(qū)動 SiC MOSFET Q1 和 Q2。(圖片來源:Cree Semiconductor)

該套件包含一個采用半橋配置并帶有兩個 Cree 80 m?、1200 伏 MOSFET 和兩個 1200 伏、20 安肖特基二極管的評估板,一個帶安裝孔的擠制鋁材散熱器、隔離式柵極驅(qū)動器、一個鐵氧體磁珠、電源以及快速組裝功率級所需的其他所有組件。

總結(jié)

通過使用快速開關(guān)式 SiC 半導(dǎo)體來提高工作頻率,可以獲得以下好處:降低產(chǎn)品經(jīng)濟壽命期內(nèi)的損耗、降低熱管理要求、減小電感器尺寸,以及減少避免 EMI 問題所需的濾波。

如前所述,要充分利用 SiC MOSFET,必須考慮寄生效應(yīng)、導(dǎo)通電阻和故障處理等諸多因素。不過,通過增強意識、使用經(jīng)驗證的解決方案和入門套件,以及遵循良好的工程實踐,將有助于避免出現(xiàn)任何問題,確保設(shè)計取得成功。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    150

    文章

    9199

    瀏覽量

    227088
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    32

    文章

    3406

    瀏覽量

    67517
  • 開關(guān)損耗
    +關(guān)注

    關(guān)注

    1

    文章

    70

    瀏覽量

    13837
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    傾佳電子SiC碳化硅MOSFET串擾抑制技術(shù):機理深度解析與基本半導(dǎo)體系級解決方案

    傾佳電子SiC碳化硅MOSFET串擾抑制技術(shù):機理深度解析與基本半導(dǎo)體系級解決方案 傾佳電子楊茜致力于推動國產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進口IGBT模塊,助力電力電子行業(yè)
    的頭像 發(fā)表于 10-02 09:29 ?176次閱讀
    傾佳電子<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>串擾抑制技術(shù):機理深度解析與基本半導(dǎo)體系級<b class='flag-5'>解決方案</b>

    BASiC_62mm SiC MOSFET半橋模塊和驅(qū)動方案介紹

    BASiC_62mm SiC MOSFET半橋模塊和驅(qū)動方案介紹
    發(fā)表于 09-01 15:23 ?0次下載

    瞻芯電子第3代1200V 35mΩ SiC MOSFET量產(chǎn)交付應(yīng)用

    近期,中國領(lǐng)先的碳化硅(SiC)功率器件與IC解決方案供應(yīng)商——瞻芯電子開發(fā)的首批第3代1200V SiC 35mΩ MOSFET產(chǎn)品,憑借優(yōu)秀的性能與品質(zhì)贏得多家重要客戶訂單,已量產(chǎn)
    的頭像 發(fā)表于 07-16 14:08 ?674次閱讀
    瞻芯電子第3代1200V 35mΩ <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>量產(chǎn)交付應(yīng)用

    SiC碳化硅MOSFET時代的驅(qū)動供電解決方案:基本BTP1521P電源芯片

    傾佳電子(Changer Tech)-專業(yè)汽車連接器及功率半導(dǎo)體(SiC碳化硅MOSFET單管,SiC碳化硅MOSFET模塊,碳化硅SiC-MOSF
    的頭像 發(fā)表于 06-19 16:57 ?847次閱讀
    <b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>時代的驅(qū)動供電<b class='flag-5'>解決方案</b>:基本BTP1521P電源芯片

    SiC MOSFET并聯(lián)運行實現(xiàn)靜態(tài)均流的基本要求和注意事項

    通過并聯(lián)SiC MOSFET功率器件,可以獲得更高輸出電流,滿足更大功率系統(tǒng)的要求。本章節(jié)主要介紹了SiC MOSFET并聯(lián)運行實現(xiàn)靜態(tài)均流
    的頭像 發(fā)表于 05-23 10:52 ?1140次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>并聯(lián)運行<b class='flag-5'>實現(xiàn)</b>靜態(tài)均流的基本要求和注意事項

    基于國產(chǎn)碳化硅SiC MOSFET的高效熱泵與商用空調(diào)系統(tǒng)解決方案

    基于BASIC Semiconductor基本半導(dǎo)體股份有限公司 碳化硅SiC MOSFET的高效熱泵與商用空調(diào)系統(tǒng)解決方案 BASiC基本股份SiC碳化硅
    的頭像 發(fā)表于 05-03 10:45 ?430次閱讀
    基于國產(chǎn)碳化硅<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的高效熱泵與商用空調(diào)系統(tǒng)<b class='flag-5'>解決方案</b>

    SiC MOSFET 開關(guān)模塊RC緩沖吸收電路的參數(shù)優(yōu)化設(shè)計

    0? 引言SiC-MOSFET 開關(guān)模塊(簡稱“SiC 模塊”)由于其高開關(guān)速度、高耐壓、低損耗的特點特別適合于高頻、大功率的應(yīng)用場合。相比 Si-IGBT, SiC-MOSFET 開關(guān)速度更快
    發(fā)表于 04-23 11:25

    傾佳電子提供SiC碳化硅MOSFET正負壓驅(qū)動供電與米勒鉗位解決方案

    SiC碳化硅MOSFET正負壓驅(qū)動供電與米勒鉗位解決方案 傾佳電子(Changer Tech)-專業(yè)汽車連接器及功率半導(dǎo)體(SiC碳化硅MOSFET
    的頭像 發(fā)表于 04-21 09:21 ?607次閱讀
    傾佳電子提供<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>正負壓驅(qū)動供電與米勒鉗位<b class='flag-5'>解決方案</b>

    麥科信光隔離探頭在碳化硅(SiCMOSFET動態(tài)測試中的應(yīng)用

    碳化硅(SiCMOSFET 是基于寬禁帶半導(dǎo)體材料碳化硅(SiC)制造的金屬氧化物半導(dǎo)體場效應(yīng)晶體管,相較于傳統(tǒng)硅(Si)MOSFET,具有更高的擊穿電壓、更低的導(dǎo)通電阻、更快的開關(guān)
    發(fā)表于 04-08 16:00

    SiC MOSFET的靜態(tài)特性

    商用的Si MOSFET耐壓普遍不超過900V,而SiC擁有更高的擊穿場強,在結(jié)構(gòu)上可以減少芯片的厚度,從而較大幅度地降低MOSFET的通態(tài)電阻,使其耐壓可以提高到幾千伏甚至更高。本文帶你了解
    的頭像 發(fā)表于 03-12 15:53 ?1169次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的靜態(tài)特性

    溝槽型SiC MOSFET的結(jié)構(gòu)和應(yīng)用

    MOSFET(U-MOSFET)作為新一代功率器件,近年來備受關(guān)注。本文將詳細解析溝槽型SiC MOSFET的結(jié)構(gòu)、特性、制造工藝、應(yīng)用及其技術(shù)挑戰(zhàn)。
    的頭像 發(fā)表于 02-02 13:49 ?1621次閱讀

    SiC MOSFET的參數(shù)特性

    碳化硅(SiCMOSFET作為寬禁帶半導(dǎo)體材料(WBG)的一種,具有許多優(yōu)異的參數(shù)特性,這些特性使其在高壓、高速、高溫等應(yīng)用中表現(xiàn)出色。本文將詳細探討SiC MOSFET的主要參數(shù)特
    的頭像 發(fā)表于 02-02 13:48 ?2003次閱讀

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超結(jié)MOSFET或者20-30mR的GaN!

    BASiC基本半導(dǎo)體40mR/650V SiC 碳化硅MOSFET,替代30mR 超結(jié)MOSFET或者20-30mR的GaN! BASiC基本半導(dǎo)體40mR/650V SiC 碳化硅
    發(fā)表于 01-22 10:43

    驅(qū)動Microchip SiC MOSFET

    電子發(fā)燒友網(wǎng)站提供《驅(qū)動Microchip SiC MOSFET.pdf》資料免費下載
    發(fā)表于 01-21 13:59 ?2次下載
    驅(qū)動Microchip <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>

    SiC MOSFET分立器件及工業(yè)模塊介紹

    BASiC國產(chǎn)SiC碳化硅MOSFET分立器件及碳化硅功率SiC模塊介紹
    發(fā)表于 01-16 14:32 ?2次下載