chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

DeepMind和OpenAI攻克蒙特祖瑪?shù)膹?fù)仇并沒(méi)有看上去意義那么重大

DPVg_AI_era ? 來(lái)源:未知 ? 作者:李倩 ? 2018-07-24 10:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

《蒙特祖瑪?shù)膹?fù)仇》是一個(gè)出了名困難的游戲,是強(qiáng)化學(xué)習(xí)的一大挑戰(zhàn)。本文作者長(zhǎng)期從事深度強(qiáng)化學(xué)習(xí)研究,他認(rèn)為DeepMind和OpenAI攻克蒙特祖瑪?shù)膹?fù)仇并沒(méi)有看上去意義那么重大,深度強(qiáng)化學(xué)習(xí)的長(zhǎng)期目標(biāo)是讓智能體具備先驗(yàn)知識(shí),可以從零開(kāi)始玩游戲。

最近,DeepMind和OpenAI都宣布他們開(kāi)發(fā)了可以學(xué)習(xí)完成Atari 2600游戲《蒙特祖瑪?shù)膹?fù)仇》第一關(guān)的智能體。他們這些宣稱(chēng)很重要,因?yàn)椤睹商刈娆數(shù)膹?fù)仇》這個(gè)游戲?qū)τ贏I研究來(lái)說(shuō)很重要。與街機(jī)學(xué)習(xí)環(huán)境(Arcade Learning Environment,ALE)里的絕大多數(shù)游戲不同,大多數(shù)游戲現(xiàn)在很容易被利用深度學(xué)習(xí)的agent解決掉,達(dá)到超越人類(lèi)水平的表現(xiàn)。但《蒙特祖瑪?shù)膹?fù)仇》一直沒(méi)有被深度強(qiáng)化學(xué)習(xí)方法解決,而且被一些人認(rèn)為在未來(lái)的幾年里都無(wú)法解決。

蒙特祖瑪?shù)膹?fù)仇的第一個(gè)房間

蒙特祖瑪?shù)膹?fù)仇與ALE中其他游戲的區(qū)別在于,它的獎(jiǎng)勵(lì)(rewards)相對(duì)少。這意味著agent只在長(zhǎng)時(shí)間完成特定的一系列動(dòng)作之后才會(huì)收到獎(jiǎng)勵(lì)信號(hào)。在蒙特祖瑪?shù)膹?fù)仇的第一個(gè)房間里(見(jiàn)上圖1),這意味著agent要從梯子上下來(lái),用繩子跳過(guò)一個(gè)空地,從另一個(gè)梯子下來(lái),跳過(guò)一個(gè)會(huì)移動(dòng)的敵人,最后還要爬上另一個(gè)梯子。所有這些只是為了在第一個(gè)房間里拿到第一把鑰匙!

在游戲的第一關(guān),有23個(gè)這樣的房間,agent要在這些房間里拿到所有鑰匙,才能完成這個(gè)關(guān)卡(見(jiàn)圖2)。更復(fù)雜的是,游戲中導(dǎo)致失敗的條件也相當(dāng)嚴(yán)格,agent會(huì)由于很多可能的事件導(dǎo)致死亡,其中最累人的是從高的地方墜落。不熟悉這個(gè)游戲的人可以試著玩一下,看看你要花多長(zhǎng)時(shí)間才能通過(guò)第一個(gè)房間,更不用說(shuō)通過(guò)第一個(gè)關(guān)卡了。

蒙特祖瑪?shù)膹?fù)仇第一關(guān)

由于難度太高,《蒙特祖瑪?shù)膹?fù)仇》游戲被視為Deep RL方法的一大挑戰(zhàn)。事實(shí)上,這款游戲激發(fā)了一些更有趣的方法的開(kāi)發(fā),這些方法可以對(duì)傳統(tǒng)的Deep RL算法進(jìn)行增強(qiáng)或重構(gòu),利用新的方法進(jìn)行分層控制、探索和體驗(yàn)回放。因此,當(dāng)DeepMind和OpenAI各自聲稱(chēng)已經(jīng)開(kāi)發(fā)出能夠如此出色地玩這個(gè)游戲的算法時(shí),就成了大新聞(至少在有些領(lǐng)域是如此)。

DeepMind和OpenAI在這個(gè)游戲到底達(dá)到了多厲害的水平呢?是這樣先前的技術(shù)最高水平是2600分(DeepMind的FuN模型),而新方法可以達(dá)到數(shù)萬(wàn)分。從工程和理論的角度來(lái)看,所有這三種方法都得到了令人印象深刻的結(jié)果,所有方法都需要學(xué)習(xí)。

但是,用深度強(qiáng)化學(xué)習(xí)來(lái)解決蒙特祖瑪?shù)膹?fù)仇的說(shuō)法并不像它們看起來(lái)的那樣。在這三種情況下(DeepMind的兩篇論文和OpenAI的一篇博客文章),使用人類(lèi)專(zhuān)家演示都是他們的算法的一個(gè)組成部分,這從根本上改變了學(xué)習(xí)問(wèn)題的本質(zhì)。

在這篇文章中,我想討論的是,這些方法是為了解決蒙特祖瑪?shù)膹?fù)仇游戲的第一個(gè)關(guān)卡,以及為什么在游戲環(huán)境以及Deep RL的長(zhǎng)期目標(biāo)中,這些方法并沒(méi)有看上去意義重大。最后,我將簡(jiǎn)要地討論一下這個(gè)出了名困難的游戲中真正重大的結(jié)果是什么,這將為這個(gè)領(lǐng)域指明前進(jìn)的方向。

DeepMind的結(jié)果:從YouTube學(xué)習(xí)和Q-Learning

從YouTube學(xué)習(xí)

DeepMind在5月份發(fā)布了一篇引人注目的論文“通過(guò)觀看YouTube來(lái)玩困難的探索游戲”(Playing hard exploration games by watching YouTube),里面提出了我們今天介紹的解決蒙特祖瑪?shù)膹?fù)仇的三種方法中最有趣的一種。正如題目所示,研究小組設(shè)計(jì)了一種方法,可以使用專(zhuān)業(yè)玩家通關(guān)游戲第一關(guān)的視頻來(lái)輔助學(xué)習(xí)過(guò)程。

“從視頻學(xué)習(xí)”這個(gè)問(wèn)題本身就是一個(gè)有趣的挑戰(zhàn),完全超出了游戲本身的挑戰(zhàn)。正如作者所指出的,在YouTube上發(fā)現(xiàn)的視頻包含了各種各樣的artifacts,它們可以阻止在視頻中發(fā)生的事情與在ALE中玩游戲的agent可能觀察到的事情之間進(jìn)行映射。為了解決這一“差距”,他們創(chuàng)建了一種方法,能夠?qū)?duì)游戲狀態(tài)(視覺(jué)的和聽(tīng)覺(jué)的)的觀察結(jié)果嵌入到一個(gè)共同的嵌入空間中。

不同的演示視頻和模擬器圖像的比較

然后,利用這個(gè)嵌入空間為學(xué)習(xí)智能體提供獎(jiǎng)勵(lì)。agent不再只接受原始游戲提供的稀疏獎(jiǎng)勵(lì),而是還能獲得中間獎(jiǎng)勵(lì),該中間獎(jiǎng)勵(lì)對(duì)應(yīng)于沿著專(zhuān)家玩家提供的路徑到達(dá)檢查點(diǎn)。通過(guò)這種方式,agent可以獲得更強(qiáng)的學(xué)習(xí)信號(hào),最終以41000的分?jǐn)?shù)通過(guò)了游戲的第一關(guān)。

Q-Learning

大約在YouTube論文發(fā)表的同時(shí),DeepMind分享了另一組實(shí)驗(yàn)的結(jié)果,這次的論文標(biāo)題不那么引人注目:“Observe and Look Further: Achieving Consistent Performance on Atari”。

在論文中,他們提出一系列有趣的算法改進(jìn)Deep Q-learning,提高算法的穩(wěn)定性和能力。第一個(gè)是在Q-update中增加折扣因子(discount factor),這樣就可以學(xué)習(xí)更長(zhǎng)期的時(shí)間依賴(lài)性,而不需要考慮高折扣因子的典型缺點(diǎn)。第二種方法是使Deep Q-learning能夠解釋不同數(shù)量級(jí)的獎(jiǎng)勵(lì)信號(hào),從而使算法能夠解決最優(yōu)策略涉及學(xué)習(xí)這些不同獎(jiǎng)勵(lì)的任務(wù)。

除了這兩項(xiàng)改進(jìn)之外,他們還建議使用人類(lèi)演示(human demonstrations)作為增強(qiáng)探索過(guò)程的一種手段,自動(dòng)向網(wǎng)絡(luò)提供專(zhuān)業(yè)玩家會(huì)遵循的狀態(tài)空間軌跡的信息。結(jié)合這三種改進(jìn),作者最終得到一個(gè)能夠以38000分的成績(jī)完成蒙特祖瑪?shù)膹?fù)仇第一關(guān)的agent。值得注意的是,只使用前兩項(xiàng)改進(jìn)(沒(méi)有人類(lèi)演示)不足以在游戲中獲得矚目的表現(xiàn),得分只有2000多分。

OpenAI的結(jié)果:近端策略?xún)?yōu)化

訓(xùn)練期間使用restart

在DeepMind的結(jié)果發(fā)表幾周后,OpenAI發(fā)布了一篇博客文章,描述了一種也可以訓(xùn)練智能體完成蒙特祖瑪?shù)膹?fù)仇第一關(guān)的方法。該方法也依賴(lài)于人類(lèi)的演示,但他們的方法與DeepMind的方法稍有不同。

在OpenAI的方法中,人類(lèi)演示不是作為獎(jiǎng)勵(lì)或?qū)W習(xí)信號(hào)的一部分,而是作為智能體重新啟動(dòng)(restart)的一種手段。在游戲中給定人類(lèi)專(zhuān)家的移動(dòng)軌跡,agent在游戲接近尾聲時(shí)啟動(dòng),然后在每次重新啟動(dòng)的過(guò)程中緩慢地往回移動(dòng)軌跡。這樣做的好處是,僅將agent暴露給游戲中人類(lèi)玩家已經(jīng)探索過(guò)的部分,并隨著agent本身變得更強(qiáng)而擴(kuò)大范圍。因?yàn)槭褂昧四J(rèn)的近端策略?xún)?yōu)化(PPO算法),這種方法對(duì)實(shí)際學(xué)習(xí)算法沒(méi)有任何改變。只要在“正確”的位置啟動(dòng)agent,就足以確保它找到正確的解決方案,最終,該方法獲得了歷史最高的74500分。

模仿學(xué)習(xí)的局限性

上述所有方法都有一個(gè)共同點(diǎn),就是它們都使用了一組人類(lèi)專(zhuān)家的演示。第一種方法利用演示來(lái)學(xué)習(xí)獎(jiǎng)勵(lì)信號(hào),第二種方法利用演示來(lái)學(xué)習(xí)更準(zhǔn)確的Q值,第三種方法利用演示來(lái)更智能地重新啟動(dòng)agent。在這三種情況下,演示對(duì)學(xué)習(xí)過(guò)程都至關(guān)重要。一般來(lái)說(shuō),使用演示是為agent提供關(guān)于任務(wù)的有意義的知識(shí)的好方法。實(shí)際上,這就是我們?nèi)祟?lèi)能夠?qū)W習(xí)無(wú)數(shù)任務(wù)的方法。人類(lèi)從演示中學(xué)習(xí)的能力的關(guān)鍵是,我們能夠?qū)蝹€(gè)演示進(jìn)行抽象和歸納,并在新的情況中利用。就《蒙特祖瑪?shù)膹?fù)仇》這個(gè)游戲而言,與其開(kāi)發(fā)一種通用的游戲解決方案(如DeepMind的兩篇論文所指出的那樣),真正被開(kāi)發(fā)出來(lái)的是一種利用游戲的關(guān)鍵弱點(diǎn)作為實(shí)驗(yàn)平臺(tái)的聰明方法:游戲的確定性(determinism)。

不管是人類(lèi)還是AI智能體,每次玩《蒙特祖瑪?shù)膹?fù)仇》時(shí),都會(huì)看到很多完全相同的房間,每個(gè)房間都有完全相同的障礙和謎題。因此,對(duì)每個(gè)房間里的動(dòng)作進(jìn)行簡(jiǎn)單的記憶就足以讓你獲得高分,并且能夠通過(guò)這一關(guān)。雖然如果智能體被迫從頭開(kāi)始學(xué)習(xí)不一定是明顯的缺陷,但當(dāng)這種情況加入了專(zhuān)家演示時(shí),就變成了一個(gè)缺陷。這三種解決方案都利用了游戲的確定性,使智能體能夠更輕松地學(xué)習(xí)解決方案的路徑。最終它學(xué)到的不是如何玩困難的游戲,而是如何執(zhí)行預(yù)先確定的一套動(dòng)作,以完成特定的游戲。

OpenAI的博客文章簡(jiǎn)要地提到了確定性的問(wèn)題,但它是在Atari 模擬器本身的層面,而不是在特定的游戲?qū)用?。他們的解決方案是使用一個(gè)隨機(jī)的跳幀控制(frame-skip)來(lái)阻止agent記住軌跡。雖然這阻止了agent記憶一系列的動(dòng)作,但它并不阻止通過(guò)狀態(tài)空間來(lái)記憶一般軌跡。

在所有這些情況下,《蒙特祖瑪?shù)膹?fù)仇》這個(gè)游戲不再是稀疏獎(jiǎng)勵(lì)問(wèn)題的一個(gè)很難解決的問(wèn)題,而是變成了通過(guò)固定的狀態(tài)空間學(xué)習(xí)軌跡一個(gè)更容易的問(wèn)題。這是令人遺憾的,因?yàn)樵谧畛醯臉?gòu)想中,這個(gè)游戲仍然可能為深度強(qiáng)化學(xué)習(xí)的研究者提供更具吸引力的挑戰(zhàn)。

解決蒙特祖瑪?shù)膹?fù)仇——艱難的道路

幾年來(lái),我一直密切關(guān)注著蒙特祖瑪?shù)膹?fù)仇的結(jié)果,因?yàn)槲野阉鼈兛醋魇且环N試金石,用來(lái)檢驗(yàn)深度強(qiáng)化學(xué)習(xí)是否開(kāi)始顯示出更一般的推理和學(xué)習(xí)能力的跡象。許多結(jié)果表明,給定足夠的計(jì)算能力,深度強(qiáng)化學(xué)習(xí),甚至隨機(jī)搜索都能解決簡(jiǎn)單的優(yōu)化問(wèn)題。然而,許多研究人員對(duì)人類(lèi)水平的智能感興趣,而這不僅是簡(jiǎn)單的優(yōu)化。它涉及在多個(gè)抽象層次上學(xué)習(xí)和推理概念,包括將從一個(gè)問(wèn)題空間學(xué)到的概念知識(shí)以一種可適應(yīng)的方式推廣到許多問(wèn)題空間。

當(dāng)你把蒙特祖瑪?shù)膹?fù)仇的第一個(gè)房間呈現(xiàn)給任何人,并問(wèn)他們需要做什么時(shí),他們很快就會(huì)開(kāi)始向你描述一系列的行動(dòng)和觀察,這表明人類(lèi)對(duì)游戲可能的動(dòng)態(tài)有復(fù)雜的理解。最明顯的表現(xiàn)他們會(huì)認(rèn)識(shí)到鑰匙是理想的物體,骷髏頭是需要避免的東西,梯子是有活動(dòng)能力的東西。然后鑰匙暗示打開(kāi)鎖著的門(mén)的能力,突然出現(xiàn)復(fù)雜的多步驟計(jì)劃以及如何完成關(guān)卡的方式。這種推理和計(jì)劃不僅適用于游戲的某個(gè)特定關(guān)卡,還適用于我們所遇到的任何類(lèi)似的關(guān)卡或游戲。這些技能對(duì)于人類(lèi)智能而言至關(guān)重要,而且對(duì)于那些試圖將深度強(qiáng)化學(xué)習(xí)推廣到一套簡(jiǎn)單的優(yōu)化算法之外的人來(lái)說(shuō)也很感興趣。然而,在確定性環(huán)境中使用人類(lèi)演示完全繞過(guò)了對(duì)這些技能的需要。

如果沒(méi)有用來(lái)解釋視覺(jué)場(chǎng)景的先驗(yàn)知識(shí),像《蒙特祖瑪?shù)膹?fù)仇》這類(lèi)游戲看起來(lái)可能是這樣的

當(dāng)然,這些技能也是最難以用算法形式表達(dá)的,尤其是它們的人類(lèi)表現(xiàn)形式尚沒(méi)有被完全理解。特別是在概念學(xué)習(xí)的情況下,通常需要把外部的一般知識(shí)引入到新的問(wèn)題上。正如伯克利的一個(gè)研究團(tuán)隊(duì)所指出的那樣,如果我們沒(méi)有先驗(yàn)知識(shí)(無(wú)論是與生俱來(lái)來(lái)說(shuō)后天學(xué)習(xí)的),許多我們認(rèn)為理所當(dāng)然的視頻游戲會(huì)變得更加復(fù)雜。

然后問(wèn)題就變成了,AI智能體如何才能自然地學(xué)習(xí)像《蒙特祖瑪?shù)膹?fù)仇》這樣的游戲所需要的先驗(yàn)知識(shí)。此外,這些習(xí)得的先驗(yàn)知識(shí)如何不僅僅被用于玩一個(gè)特定游戲的特定關(guān)卡,而是可以玩任何類(lèi)似游戲的任何關(guān)卡。表示學(xué)習(xí)和概念基礎(chǔ)方面正在進(jìn)行一些有趣的工作,我認(rèn)為這對(duì)解決這些問(wèn)題是至關(guān)重要的。還有一些工作正在開(kāi)發(fā)更多的隨機(jī)環(huán)境,以更好地測(cè)試智能體的泛化能力,其中最引人注目的是GVGAI競(jìng)賽(通用視頻游戲AI競(jìng)賽)。

我熱切地期待有一天我們可以毫無(wú)疑問(wèn)地說(shuō),AI智能體可以學(xué)會(huì)從頭開(kāi)始玩《蒙特祖瑪?shù)膹?fù)仇》。當(dāng)那一天到來(lái)時(shí),會(huì)有很多令人興奮的事情。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 智能體
    +關(guān)注

    關(guān)注

    1

    文章

    387

    瀏覽量

    11520
  • 強(qiáng)化學(xué)習(xí)

    關(guān)注

    4

    文章

    269

    瀏覽量

    11903

原文標(biāo)題:深度強(qiáng)化學(xué)習(xí)試金石:DeepMind和OpenAI攻克蒙特祖瑪復(fù)仇的真正意義

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    揭秘:快充并沒(méi)有看上去那么簡(jiǎn)單

    快充技術(shù)發(fā)展到今天可以說(shuō)已經(jīng)比較成熟。在電池技術(shù)無(wú)法取得突破性成果的今天,快速充電技術(shù)可以說(shuō)是最佳以及最合理的續(xù)航解決方案。但是快充也不是表面上看上去那么簡(jiǎn)單,那么接下來(lái)小編就跟讀者一起探討一下快充技術(shù)。
    發(fā)表于 03-04 14:06 ?4253次閱讀

    LMH6502仿真結(jié)果顯示信號(hào)不但沒(méi)有放大,反而衰減了,為什么?

    手冊(cè)中提到可以使用單電源,按照手冊(cè)的電路做了板子,可目前在調(diào)試階段并沒(méi)有得到放大的波形,輸出看上去沒(méi)有信號(hào)。 datasheet中的電路如下: 自己做的電路為: 輸入為0.1V峰峰值的正弦波
    發(fā)表于 08-16 06:23

    自己想做個(gè)顯示器,看上去并沒(méi)有那么難!

    ,那么我們需要用到30條柵格墻,柵格墻的結(jié)構(gòu)是用Inkscape畫(huà)出的,接下來(lái)用激光切割機(jī)切割比薩盒即可得到我們需要的柵格墻。最后將他們組裝起來(lái)即可。第三步:屏幕設(shè)計(jì)和組裝要讓屏幕能夠正確地顯示你所提
    發(fā)表于 12-08 14:01

    電動(dòng)自行車(chē)?看上去就是普通的單車(chē)??!

    `看到一款很好看的自行車(chē),結(jié)果是電動(dòng)單車(chē),明明看上去和普通的自行車(chē)一模一樣,沒(méi)啥特別的。電動(dòng)自行車(chē)不應(yīng)該體積更大一些嗎?我還是比較喜歡傳統(tǒng)自行車(chē)的纖細(xì)線(xiàn)條。不過(guò)這款德國(guó)公司Freygeist推出同名
    發(fā)表于 01-27 11:28

    【Intel Edison試用體驗(yàn)】開(kāi)箱--看上去有點(diǎn)美

    著組裝,看看底板。底板正面圖底板背面圖,絲印都非常清晰。一側(cè)的USB接口及電源接口這是啥,這就是底板與EDISON的接口了。最后上一張組裝好的效果圖呵,有點(diǎn)美!不止上看上去美,真的狠美!接下來(lái)
    發(fā)表于 07-16 11:03

    什么是注冊(cè)表

    什么是注冊(cè)表? 注冊(cè)表因?yàn)樗鼜?fù)雜的結(jié)構(gòu)和沒(méi)有任何聯(lián)系的CLSID鍵使得它可能看上去很神秘。不幸的是,微軟并沒(méi)有完全公開(kāi)講述
    發(fā)表于 02-24 11:40 ?934次閱讀

    華為p10新機(jī)曝光,或采用970麒麟芯片

    華為P10的原型產(chǎn)品前面板似乎并沒(méi)有按鍵,看上去和小米5s的設(shè)計(jì)很像,是一個(gè)“按不下去”的、在玻璃面板上刻出來(lái)的區(qū)域。
    發(fā)表于 12-10 09:00 ?2561次閱讀

    OpenAI宣布他們的AI僅通過(guò)一次人類(lèi)演示,蒙特祖瑪復(fù)仇游戲中玩出歷史最高分

    這次,OpenAI的研究團(tuán)隊(duì)訓(xùn)練了一個(gè)智能體,僅通過(guò)一次人類(lèi)demo,就在蒙特祖瑪復(fù)仇游戲中獲得了74500分的成績(jī),比以往公布的任何結(jié)果都要好。
    的頭像 發(fā)表于 07-09 09:24 ?4756次閱讀

    三星Note10曝光采用真全面屏設(shè)計(jì)支持5G擁有10GB+512GB大存儲(chǔ)

    從這張渲染圖來(lái)看,三星Note10并沒(méi)有采用三星S10系列的Infinity-O打孔屏設(shè)計(jì),正面幾乎沒(méi)有任何開(kāi)孔,看上去更加極致,左右邊框幾乎已經(jīng)沒(méi)有了,上下邊框極窄,
    發(fā)表于 03-12 15:44 ?1664次閱讀

    AirPods2的做工并沒(méi)有想象中的那么

    雖說(shuō)蘋(píng)果出品必屬精品,從設(shè)計(jì)和功能上或許蘋(píng)果的產(chǎn)品沒(méi)有問(wèn)題。但是這不代表著蘋(píng)果產(chǎn)品的做工也都是精品。最近,蘋(píng)果剛剛發(fā)布了AirPods 2代。相比第一代而言,AirPods2并沒(méi)有太明顯的提升?;旧蠈儆诔R?guī)升級(jí),但是價(jià)格卻增加不少。所以AirPods2在發(fā)布之后,就受到
    發(fā)表于 04-01 14:30 ?1.9w次閱讀

    新西蘭并沒(méi)有禁用華為5G

    新西蘭并沒(méi)有禁用華為5G
    發(fā)表于 04-04 08:53 ?1311次閱讀

    這款“養(yǎng)豬機(jī)器人”,外形看上去是一臺(tái)平常的喂料機(jī)

    這款“養(yǎng)豬機(jī)器人”,外形看上去是一臺(tái)平常的喂料機(jī)。實(shí)際上,它有一個(gè)聰明的“大腦”,能夠采集生豬的進(jìn)食時(shí)間、時(shí)長(zhǎng)、頻次、食量等數(shù)據(jù),并且通過(guò)機(jī)器深度學(xué)習(xí),對(duì)飼料進(jìn)行預(yù)測(cè)和分配。
    的頭像 發(fā)表于 10-09 09:44 ?5098次閱讀

    董明珠表態(tài):格力手機(jī)并沒(méi)有失敗

    據(jù)國(guó)內(nèi)媒體報(bào)道,此前,董明珠在接受采訪時(shí)曾表示,在手機(jī)領(lǐng)域,到現(xiàn)在為止格力手機(jī)并沒(méi)有失敗。
    的頭像 發(fā)表于 12-14 16:02 ?1948次閱讀

    三星Z Flip3的設(shè)計(jì)從主屏幕看上去好像沒(méi)什么變化

    從網(wǎng)上曝光的圖片中可以看到,三星Z Flip3的設(shè)計(jì)雖然從主屏幕看上去好像沒(méi)什么變化,當(dāng)你把手機(jī)折疊起來(lái)后再看,就會(huì)發(fā)現(xiàn)該機(jī)與上一代機(jī)型的變化還是很大的。三星Z Flip3的副屏尺寸變大了
    的頭像 發(fā)表于 01-23 10:03 ?3245次閱讀

    客戶(hù)改了一個(gè)電阻就炸機(jī)?原因并沒(méi)有那么簡(jiǎn)單

    客戶(hù)改了一個(gè)電阻就炸機(jī)?原因并沒(méi)有那么簡(jiǎn)單【樣機(jī)芯片介紹】本次調(diào)試的樣機(jī)主控IC為思睿達(dá)主推的成都啟臣微的CR6853B,該IC為副邊控制IC,該IC是一款高集成度,低功耗的電流模PWM控制芯片,該
    的頭像 發(fā)表于 05-08 09:59 ?686次閱讀
    客戶(hù)改了一個(gè)電阻就炸機(jī)?原因<b class='flag-5'>并沒(méi)有</b><b class='flag-5'>那么</b>簡(jiǎn)單