chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Linear Resistance Meter,線性刻度歐姆表

454398 ? 2018-09-20 19:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Linear Resistance Meter,線性刻度歐姆表

關(guān)鍵字:Linear Resistance Meter

Most analogue multimeters are capable of measuring resistance over quite a wide range of values, but are rather inconvenient in use due to the reverse reading scale which is also non-linear. This can also give poor accuracy due to cramping of the scale that occurs at the high value end of each range. This resistance meter has 5 ranges and it has a forward reading linear scale on each range.The full-scale values of the 5 ranges are 1K, 10K, 100K, 1M &10M respectively and the unit is therefore capable of reasonably accurate measurements from a few tens of ohms to ten Megohms.
Circuit diagram

The Circuit
Most linear scale resistance meters including the present design, work on the principle that if a resistance is fed from a constant current source the voltage developed across that resistance is proportional to its value. For example, if a 1K resistor is fed from a 1 mA current source from Ohm’s Law it can be calculated that 1 volt will be developed across the resistor (1000 Ohms divided by 0.001 amps = 1 volt). Using the same current and resistance values of 100 ohms & 10K gives voltages of 0.1volts (100 ohms / 0.001amps = 0.1volts) & 10 volts (10000 ohms / 0.001amps = 10 volts).
Thus the voltage developed across the resistor is indeed proportional to its value, and a voltmeter used to measure this voltage can in fact be calibrated in resistance, and will have the desired forward reading linear scale. One slight complication is that the voltmeter must not take a significant current or this will alter the current fed to the test resistor and impair linearity. It is therefore necessary to use a high impedance voltmeter circuit.
The full circuit diagram of the Linear Resistance Meter is given in Figure 1. The constant current generator is based on IC1a and Q1. R1, D1 and D2 form a simple form a simple voltage regulator circuit, which feeds a potential of just over 1.2 volts to the non-inverting input of IC1a. There is 100% negative feedback from the emitter of Q1 to the inverting input of IC1a so that Q1’s emitter is stabilised at the same potential as IC1a’s non-inverting input. In other words it is stabilised a little over 1.2 volts below the positive supply rail potential. S3a gives 5 switched emitter resistances for Q1, and therefore 5 switched emitter currents. S3b provides 5 reference resistors across T1 & T2 via S2 to set full-scale deflection on each range using VR1.
As the emitter and collector currents of a high gain transistor such as a BC179 device used in the Q1 are virtually identical, this also gives 5 switched collector currents. By having 5 output currents, and the current reduced by a factor of 10 each time S3a is moved one step in a clockwise direction, the 5 required measuring ranges are obtained. R2 to R6 must be close tolerance types to ensure good accuracy on all ranges. The high impedance voltmeter section uses IC1b with 100% negative feedback from the output to the inverting input so that there is unity voltage gain from the non-inverting input to the output. The output of IC1b drives a simple voltmeter circuit using VR1 and M1, and the former is adjusted to give the correct full-scale resistance values.
The CA3240E device used for IC1 is a dual op-amp having a MOS input stage and a class A output stage. These enable the device to operate with the inputs and outputs right down to the negative supply rail voltage. This is a very helpful feature in many circuits, including the present one as it enables a single supply rail to be used where a dual balanced supply would otherwise be needed. In many applications the negative supply is needed simply in order to permit the output of the op-amp to reach the 0volt rail. In applications of this type the CA3240E device normally enables the negative supply to be dispensed with.
As the CA3240E has a MOS input stage for each section the input impedance is very high (about 1.5 million Megohms!) and obviously no significant input current flows into the device. This, together with the high quality of the constant current source, and the practically non-existent distortion through IC1b due to the high feedback level gives this circuit excellent linearity.
With no resistor connected across T1 & T2 M1 will be taken beyond full-scale deflection and overloaded by about 100 or 200%. This is unlikely to damage the meter, but to be on the safe side a push-to-test on/off switch (S1) is used. Thus the power is only applied to the circuit when a test resistor is connected to the unit, and prolonged meter overloads are thus avoided.
A small (PP3 size) 9 volt battery is a suitable power source for this project which has a current consumption of around 5mA and does not require a stabilised supply.
Photos showing inside and outside of the completed Linear Resistance Meter.
Author: Dave Elliott
Email: portagepal@tiscali.co.uk
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    50 歐姆、高 IP3、低噪聲寬帶增益模塊 skyworksinc

    IP3、低噪聲寬帶增益模塊真值,50 歐姆、高 IP3、低噪聲寬帶增益模塊管腳等資料,希望可以幫助到廣大的電子工程師們。
    發(fā)表于 09-01 18:32
    50 <b class='flag-5'>歐姆</b>、高 IP3、低噪聲寬帶增益模塊 skyworksinc

    用數(shù)字萬用判斷常用電子元器件

    并聯(lián)的分流電阻隨量程的增大,其阻值幾乎10倍的增加,A、B兩點的電壓也會逐次增大,流過表頭的電流也增大,表針偏轉(zhuǎn)超過滿刻度,因此在改變量程時要調(diào)零。所以當(dāng)萬用置各量程時,回路的電流是不同的。 量程
    發(fā)表于 05-27 16:03

    線性電機(linear motor)介紹

    線性馬達一般指線性電機線性馬達是一種將電能直接轉(zhuǎn)換成直線運動機械能,而不需要任何中間轉(zhuǎn)換機構(gòu)的傳動裝置。它可以看成是一臺旋轉(zhuǎn)電機按徑向剖開,并展成平面而成。直線電機也稱線性電機,
    的頭像 發(fā)表于 03-25 19:33 ?1803次閱讀
    <b class='flag-5'>線性</b>電機(<b class='flag-5'>linear</b> motor)介紹

    鼎陽科技推出新一代精密源SMM3000X系列

    編程及測量分辨率,最大采集速率100,000 points/s。支持四象限操作,能夠同時采集和測量信號,實現(xiàn)對DUT的源-測量循環(huán)。既可作為恒壓源、恒流源、電壓、電流歐姆表,還可以作為脈沖發(fā)生器、波形發(fā)生器,是測試半導(dǎo)體和
    的頭像 發(fā)表于 02-19 09:13 ?781次閱讀
    鼎陽科技推出新一代精密源<b class='flag-5'>表</b>SMM3000X系列

    ADGS2414D: 0.56 Ω On Resistance High Density Octal SPST Switch Data Sheet adi

    資料,ADGS2414D: 0.56 Ω On Resistance High Density Octal SPST Switch Data Sheet真值,ADGS2414D: 0.56
    發(fā)表于 01-15 18:51
    ADGS2414D: 0.56 Ω On <b class='flag-5'>Resistance</b> High Density Octal SPST Switch Data Sheet adi

    DAC8760滿刻度輸出異常的原因?怎么解決?

    如下電路圖, 目前參考電壓設(shè)定是0V~5V, 遇到的問題是CODE輸出設(shè)定為滿刻度電壓5V, 但實際的電壓輸出只有約3.03V, 等于3.03V~5V間的CODE值沒有變化, 不知道有沒有前輩也曾遇過這樣子的問題, 還請給我一點建議,謝謝!!
    發(fā)表于 12-20 07:21

    為什么是50歐姆,50歐姆阻抗的來源和意義

    本文介紹了在射頻、PCB、阻抗匹配和S參數(shù)相關(guān)知識中經(jīng)常提到的50Ohm(歐姆)阻抗的來源和意義。 當(dāng)我們在說射頻、PCB以及阻抗匹配和S參數(shù)相關(guān)知識時,經(jīng)常會提到50Ohm(歐姆)阻抗。而且這個
    的頭像 發(fā)表于 11-22 10:43 ?3875次閱讀
    為什么是50<b class='flag-5'>歐姆</b>,50<b class='flag-5'>歐姆</b>阻抗的來源和意義

    如何用歐姆定律來理解二極管

    特性與歐姆定律所描述的線性關(guān)系有所不同,二極管具有單向?qū)щ娦?,即在正向偏壓下?dǎo)通,在反向偏壓下則截止。 本文將探討如何用歐姆定律來理解二極管,盡管這兩者在本質(zhì)上存在差異,但通過適當(dāng)?shù)姆椒ê湍P?,我們可以在一定?/div>
    的頭像 發(fā)表于 11-21 18:15 ?1239次閱讀
    如何用<b class='flag-5'>歐姆</b>定律來理解二極管

    TPL5010的Digital conversion of external resistance (Rext)功耗是怎么計算的?

    Datasheet的7.5中有關(guān)于Digital conversion of external resistance (Rext)的功耗, 請問,這個功耗應(yīng)該怎么理解,和總體功耗有什么關(guān)系?
    發(fā)表于 11-08 08:09

    歐姆定律與電路分析技巧

    歐姆定律是電路分析中的基石,它描述了電流、電壓和電阻之間的基本關(guān)系。在進行電路分析時,掌握一些基于歐姆定律的技巧可以幫助我們更有效地理解和解決問題。以下是一些關(guān)于歐姆定律與電路分析技巧的討論: 一
    的頭像 發(fā)表于 10-28 15:31 ?2219次閱讀

    歐姆定律的實際應(yīng)用實例

    歐姆定律是電氣工程和物理學(xué)中的一個基本定律,它描述了電流、電壓和電阻之間的關(guān)系。這個定律由德國物理學(xué)家喬治·西蒙·歐姆在1827年首次提出,其公式為 V = IR,其中 V 代表電壓(伏特),I
    的頭像 發(fā)表于 10-28 15:27 ?5414次閱讀

    歐姆定律的常見誤區(qū)

    歐姆定律是電磁學(xué)中的一個基本定律,它描述了電流、電壓和電阻之間的關(guān)系。這個定律以德國物理學(xué)家喬治·西蒙·歐姆的名字命名,他在1827年首次發(fā)表了這一定律。盡管歐姆定律在中學(xué)物理課程中廣泛教授,但仍然
    的頭像 發(fā)表于 10-28 15:25 ?3505次閱讀

    歐姆定律與電阻關(guān)系

    歐姆定律與電阻之間存在密切的關(guān)系,這一關(guān)系在電路學(xué)中至關(guān)重要。以下是對歐姆定律與電阻關(guān)系的介紹: 一、歐姆定律的基本內(nèi)容 歐姆定律表明,在一段電路中,當(dāng)導(dǎo)體兩端的電壓一定時,通過導(dǎo)體的
    的頭像 發(fā)表于 10-28 15:15 ?4946次閱讀

    如何理解歐姆定律

    歐姆定律是電路學(xué)中的基本原理,它描述了導(dǎo)體中電流、電壓和電阻之間的關(guān)系。以下是對歐姆定律的介紹: 一、定義 歐姆定律表明,在一段電路中,當(dāng)導(dǎo)體兩端的電壓一定時,通過導(dǎo)體的電流與導(dǎo)體的電阻成反比;當(dāng)
    的頭像 發(fā)表于 10-28 15:11 ?5908次閱讀

    歐姆定律在電路中的應(yīng)用

    在電氣工程和電子技術(shù)領(lǐng)域,歐姆定律是一個不可或缺的基礎(chǔ)理論。它不僅幫助我們理解電路的工作原理,還在電路設(shè)計、故障診斷和性能優(yōu)化中發(fā)揮著關(guān)鍵作用。 一、歐姆定律的定義 歐姆定律是由德國物理學(xué)家喬治
    的頭像 發(fā)表于 10-28 15:06 ?4505次閱讀