chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

騰訊提出器官神經(jīng)網(wǎng)絡(luò) 全自動輔助頭頸放療規(guī)劃

mK5P_AItists ? 來源:未知 ? 作者:胡薇 ? 2018-11-19 16:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

騰訊醫(yī)療AI實驗室又有新研究。這次跟美國加州大學(xué)合作,在國際權(quán)威期刊《Medical Physics》發(fā)表最新研究成果:《器官神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)用于快速和全自動整體頭頸危及器官靶區(qū)勾畫》。

該研究成果能讓AI在頭頸等重要器官的放射治療規(guī)劃中,發(fā)揮精準(zhǔn)規(guī)劃作用,最大限度將放射劑量集中在靶區(qū)內(nèi),而周圍正常組織或器官少受或免受不必要的傷害。

比起單純依靠人類醫(yī)生,可以提升診療規(guī)劃效率,降低勾勒時長,還能提升勾畫準(zhǔn)確率。

可以說是患者福音,醫(yī)生益友。

基于深度學(xué)習(xí)的放療靶區(qū)自動勾畫

這個研究是這樣的:

每年有超過六十萬人被診斷患有頭頸部癌癥,其中許多人選擇接受放射治療。

但頭頸部重要器官比較集中,解剖關(guān)系復(fù)雜,如果在治療前未仔細(xì)隔離,放療時周圍組織可能會嚴(yán)重受損。

在頭頸癌放療過程中,醫(yī)生根據(jù)患者CT圖像手動描繪放療靶區(qū)和危及器官(Organ at Risk,OaR),目的是最大限度將放射劑量集中在靶區(qū)內(nèi),而周圍正常組織或器官少受或免受不必要的傷害。

然而勾勒過程非常耗時,降低診療效率的同時,更是耽誤了患者的治療時間。

若能讓AI幫助分割過程,輔助放療規(guī)劃,肯定能協(xié)助醫(yī)生、幫助患者。

于是圍繞該問題,騰訊醫(yī)療AI實驗室和加州大學(xué)提出一種深度學(xué)習(xí)模型——器官神經(jīng)網(wǎng)絡(luò)(AnatomyNet)。

該模型可以快速地對整張CT的所有切片進(jìn)行全自動化器官分割(Segmentation),在小于1秒鐘的時間內(nèi)完成一整幅頭頸CT的危及器官勾畫,大幅度提升放療靶區(qū)勾畫效率。

器官神經(jīng)網(wǎng)絡(luò)的輸入是頭頸CT圖像的所有切片。該神經(jīng)網(wǎng)絡(luò)可以一次性產(chǎn)生所有危及器官的預(yù)測結(jié)果。

具體構(gòu)建上,器官神經(jīng)網(wǎng)絡(luò)基于常用的三維U網(wǎng)絡(luò)(U-net)架構(gòu),但是騰訊AI實驗室在三個重要的方面對其進(jìn)行了擴(kuò)展:

1)一種新的在整幅CT圖像上進(jìn)行自動分割的編碼方式,而不是在局部圖像塊上,或者一部分CT圖像切片上分割;

2)在編碼層中,加入三維Squeeze-and-Excitation殘差結(jié)構(gòu)來進(jìn)行更好的特征表示學(xué)習(xí);

3)一種新的結(jié)合Dice損失和Focal損失的損失函數(shù),用來更好地訓(xùn)練該神經(jīng)網(wǎng)絡(luò)。在深度學(xué)習(xí)的器官分割中,使用這些技巧解決兩個主要的挑戰(zhàn):a)小器官的分割(比如,視神經(jīng)和視交叉)。這些小器官僅僅只有幾個切片。b)對于一些器官結(jié)構(gòu),數(shù)據(jù)標(biāo)注不一致以及標(biāo)注缺失給訓(xùn)練造成一些問題。

△器官神經(jīng)網(wǎng)絡(luò)危及器官分割結(jié)果

如上圖所示,其中綠色為醫(yī)生標(biāo)注,紅色為器官神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果,黃色表示標(biāo)注和預(yù)測重合,結(jié)果顯示高度一致。

從下面的動態(tài)圖上,可以更清晰看到器官神經(jīng)網(wǎng)絡(luò)預(yù)測和醫(yī)生標(biāo)注的連續(xù)過程,其中左邊顯示的是醫(yī)生標(biāo)注,右邊顯示的是器官神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果。

從結(jié)果上說:和之前MICCAI競賽中最好的方法相比,器官神經(jīng)網(wǎng)絡(luò)平均提升了3.3%的Dice指標(biāo)。

器官神經(jīng)網(wǎng)絡(luò)僅僅使用0.12秒就可以完全完成一整幅CT圖像(178×512×512)的分割。

該速度極大地縮短了之前方法所用的時間(20分鐘以上)。

除此之外,該模型可以處理一整幅包含所有切片的CT圖像,以及一次性勾畫所有的危及器官,不需要很復(fù)雜的預(yù)處理以及后處理。

這證明,深度學(xué)習(xí)可以提升器官分割準(zhǔn)確率,簡化自動分割器官的流程。

國際權(quán)威期刊刊發(fā)

騰訊醫(yī)療AI實驗室和加州大學(xué)的聯(lián)合研究成果,首刊于《Medical Physics》,這是是美國醫(yī)學(xué)物理學(xué)家學(xué)會(The American Association of Physicists in Medicine,AAPM)的官方期刊。

該研究成果在期刊上發(fā)表后,目前已經(jīng)被多個機(jī)構(gòu)引用。

美國德克薩斯大學(xué)MD安德森癌癥中心(MD Anderson Cancer Center)對騰訊醫(yī)療AI實驗室的“器官神經(jīng)網(wǎng)絡(luò)”表示關(guān)注,并把該研究成果作為中心一項大規(guī)模研究的重要部分。

該中心在美國乃至全球皆享譽(yù)盛名,多次被評為美國最佳癌癥研究機(jī)構(gòu),也是公認(rèn)的全球最好的腫瘤醫(yī)院。

此外,論文一經(jīng)發(fā)布,很快被加拿大瑞爾森大學(xué)、中國中科院等多家機(jī)構(gòu)學(xué)者在其研究報告中被提及和引用,作為最新的研究突破獲得國內(nèi)外認(rèn)可。

一旦更多研究機(jī)構(gòu)和人力參與其中,規(guī)?;涞厮俣瓤赡芤矔涌?,實乃人類福音。

騰訊醫(yī)療AI實驗室

最后,簡單介紹下騰訊醫(yī)療AI實驗室。

這是騰訊專為醫(yī)療領(lǐng)域打造的AI實驗室,創(chuàng)建于2017年年底,目前在硅谷、北京、深圳設(shè)立了三個分支。

其作為騰訊醫(yī)療健康領(lǐng)域眾重要技術(shù)驅(qū)動,騰訊AI實驗室主要以學(xué)術(shù)研究層面發(fā)力,希望在AI醫(yī)學(xué)前沿領(lǐng)域取得突破。

實驗室的主要研究方向是基于自然語言理解、醫(yī)學(xué)知識圖譜、深度學(xué)習(xí)、醫(yī)療影像、貝葉斯網(wǎng)絡(luò)、多模態(tài)分析等基礎(chǔ)技術(shù)構(gòu)建醫(yī)學(xué)知識引擎、醫(yī)療推理引擎、臨床輔助診斷引擎、問診對話引擎等智能平臺。

更早之前,騰訊醫(yī)療AI實驗室已推出帕金森病運動功能智能評估系統(tǒng),其他主要產(chǎn)品還包括臨床輔助決策支持系統(tǒng),面向腦卒中、急性冠脈綜合癥等高危易誤診疾病提供臨床輔助決策支持,以及心電圖智能分析軟件,利用AI技術(shù)實現(xiàn)心電圖監(jiān)測結(jié)果的自動判讀和預(yù)警等。

今年7月,騰訊醫(yī)療AI實驗室還有3篇論文分別被KDD 2018、SIGIR 2018、COLING 2018三個國際頂尖學(xué)術(shù)會議收錄,論文的主要研究方向為醫(yī)療知識圖譜中實體關(guān)系的發(fā)現(xiàn)和應(yīng)用。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4829

    瀏覽量

    106829
  • 醫(yī)療
    +關(guān)注

    關(guān)注

    8

    文章

    1962

    瀏覽量

    61177
  • 騰訊
    +關(guān)注

    關(guān)注

    7

    文章

    1682

    瀏覽量

    50775

原文標(biāo)題:騰訊醫(yī)療AI新突破:提出器官神經(jīng)網(wǎng)絡(luò),全自動輔助頭頸放療規(guī)劃 | 論文

文章出處:【微信號:AItists,微信公眾號:人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個啥?

    自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因為圖像本身就可以看作是由像素排列成的二維網(wǎng)格。
    的頭像 發(fā)表于 11-19 18:15 ?1853次閱讀
    <b class='flag-5'>自動</b>駕駛中常提的卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個啥?

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?718次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    摘要:針對傳統(tǒng)專家系統(tǒng)不能進(jìn)行自學(xué)習(xí)、自適應(yīng)的問題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機(jī)故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合,充分發(fā)揮了二者故障診斷的優(yōu)點,很大程度上降低了對電機(jī)
    發(fā)表于 06-16 22:09

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不進(jìn)行任何計算
    的頭像 發(fā)表于 02-12 16:41 ?1265次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1346次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?1614次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1300次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1364次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1548次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別中應(yīng)用的分析: 一、BP神經(jīng)網(wǎng)絡(luò)基本原理 BP
    的頭像 發(fā)表于 02-12 15:12 ?1202次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,神經(jīng)元之間通過
    的頭像 發(fā)表于 01-23 13:52 ?857次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2272次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法