chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

多項第一!Imagination神經(jīng)網(wǎng)絡(luò)加速器通過AIIA DNN benchmark評估

Dbwd_Imgtec ? 來源:YXQ ? 2019-07-12 15:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在6月28日南京國際博覽會議中心召開的中國人工智能峰會,中國人工智能產(chǎn)業(yè)發(fā)展聯(lián)盟(AIIA)總體組組長孫明俊主持發(fā)布了“AIIA DNN Benchmark”測評結(jié)果,Imagination的神經(jīng)網(wǎng)絡(luò)加速器通過了《AIIA DNN benchmark——人工智能端側(cè)芯片基準(zhǔn)測試評估方案 V0.5 版本》!在測試中,Imagination的神經(jīng)網(wǎng)絡(luò)加速器在多項測試中名列第一!

據(jù)發(fā)布的報告,在基于端側(cè)推斷任務(wù)深度神經(jīng)網(wǎng)絡(luò)處理器基準(zhǔn)測試結(jié)果中,Imagination的神經(jīng)網(wǎng)絡(luò)加速器在多個框架測試中成績名列第一!

孫明俊表示AIIA DNN Benchmark已經(jīng)制定兩套評估規(guī)范、完成兩輪端側(cè)評估評測工作,增加支持安卓和Linux操作系統(tǒng),是唯一一家區(qū)別整形和浮點的評測標(biāo)準(zhǔn),目前該發(fā)布結(jié)果已經(jīng)公布,

網(wǎng)址是:http://aiiaorg.cn/uploadfile/2019/0702/20190702065314379.pdf

AI 進入爆發(fā)期后,芯片對技術(shù)進步的影響愈發(fā)凸顯。AI 芯片益復(fù)雜化、多樣化,一方面,芯片廠商紛紛給出不同的衡量標(biāo)準(zhǔn),聲稱其產(chǎn)品在計算性能、單位能耗算力等方面處于行業(yè)領(lǐng)先水平;另一方面,需求方卻關(guān)心如何能從廠商給出的信息中判斷出芯片是否能實際滿足其真實場景的計算需求。針對這一現(xiàn)狀,一個與真實場景緊密相連的、同時跨產(chǎn)品可比的測試評估方案的出現(xiàn),迫在眉睫。

如何構(gòu)建與真實場景緊密相連的、面向不同產(chǎn)品形態(tài)、設(shè)備級別的 AI 加速器測試評估方案?在2018 年的AIIA 人工智能開發(fā)者大會上,《AIIA DNN benchmark——人工智能端側(cè)芯片基準(zhǔn)測試評估方案 V0.5 版本》就由孫明俊代表中國人工智能產(chǎn)業(yè)發(fā)展聯(lián)盟發(fā)布。

據(jù)孫明俊介紹,AIIA DNN benchmark 的工作目標(biāo)為客觀反映當(dāng)前以提升深度學(xué)習(xí)處理能力的 AI 加速器現(xiàn)狀,所有指標(biāo)均旨在提供客觀比對維度。AIIA 希望,該方案能夠為芯片企業(yè)提供第三方評測結(jié)果,幫助產(chǎn)品市場宣傳;同時為應(yīng)用企業(yè)提供選型參考,幫助產(chǎn)品找到合適其應(yīng)用場景的芯片。V0.5 版本首先給出了端側(cè)評估方案。

據(jù)孫明俊介紹,AI 基準(zhǔn)測試方案的制定面臨諸多挑戰(zhàn)。即便拋開優(yōu)化程度、硬件架構(gòu)等若干問題不談,延遲、帶寬、能耗都要納入考慮范圍。同時,各種神經(jīng)網(wǎng)絡(luò)模型都有不同參數(shù),不同設(shè)備在不同參數(shù)下有不同的輸出曲線。如何讓指標(biāo)在不同級別的設(shè)備中橫向可比?而云端和終端的應(yīng)用是否需要不同的基準(zhǔn)測試?如何為不同測試項目分配權(quán)重,以獲得一個相對公正客觀、有代表性的評分?這些都是應(yīng)用領(lǐng)域的差異性和實現(xiàn)選擇的多樣性導(dǎo)致的測評難題。

針對以上特點,AIIA 聯(lián)合 Arm 中國、阿里巴巴集團、百度、寒武紀(jì)科技、ChipIntelli、地平線、華為、華大半導(dǎo)體、Imagination、Synopsys,騰訊、云之聲等 12 家企業(yè),推出了 AIIA DNN benchmark——人工智能端側(cè)芯片基準(zhǔn)測試評估方案。

AIIA DNN benchmark 以“版本迭代、不斷豐富、不斷完善”的工作方式,為更多評測應(yīng)用場景、評測指標(biāo)等提供評估方案,首輪測試對象主要為端側(cè)設(shè)備。AIIA DNN benchmark 的發(fā)布,能夠促進芯片供給側(cè)與需求側(cè)的交流,讓需求方的意見能夠更快傳達到芯片企業(yè),讓企業(yè)進行有針對性的改良,加快行業(yè)迭代速度,推動 AI 產(chǎn)業(yè)的快速進步。

2017年9月,Imagination Technologies發(fā)布第一代神經(jīng)網(wǎng)絡(luò)加速器PowerVR NNA,此款NNA具有完整且獨立式的IP,在面積效率、性能運算以及功耗等方面都具有“秒殺”競爭對手的優(yōu)勢。

2018年12月,Imagination Technologies發(fā)布了其面向人工智能(AI)應(yīng)用的最新神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR Series3NX。單個Series3NX內(nèi)核的性能可從0.6到10萬億次操作/秒(TOPS),同時其多核實現(xiàn)可擴展到160TOPS以上。得益于包括無損權(quán)重壓縮等架構(gòu)性增強,Series3NX架構(gòu)的性能可在相同的芯片面積上較上一代產(chǎn)品提升40%,使SoC制造商可在性能效率方面提高近60%,且?guī)捫枨蠼档土?5%。

Imagination在PowerVR Series3NX中增加了無損的權(quán)重壓縮特性,這種壓縮減少了需要存儲和通過系統(tǒng)內(nèi)存來傳遞數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型的大小,這意味著與PowerVR Series2NX相比,Series3NX提供了更加高效的總體帶寬,相比Series2NX降低了35%,同時降低了SoC的功耗。

作為Series3NX架構(gòu)的一部分,2018年年底,Imagination 還發(fā)布了PowerVR Series3NX-F(Flexible)IP配置,以提供前所未有的功能性和靈活性平衡,同時還結(jié)合了行業(yè)領(lǐng)先的性能。采用Series3NX-F的客戶可以通過OpenCL框架來實現(xiàn)差異化并為其產(chǎn)品增加價值。

PowerVR Series3NX能夠滿足自動駕駛等應(yīng)用的高計算需求,實現(xiàn)了下一代真正的人工智能。通過使用Imagination的專用深度神經(jīng)網(wǎng)絡(luò)(DNN)API,開發(fā)人員可以輕松地針對Series3NX架構(gòu)以及現(xiàn)有PowerVR GPU編寫人工智能應(yīng)用程序。該API可以在多種SoC配置上工作,以便在現(xiàn)有設(shè)備上輕松地完成原型設(shè)計,目前Imagination的神經(jīng)網(wǎng)絡(luò)加速器產(chǎn)品已經(jīng)廣泛應(yīng)用在手機、安防、智慧家居領(lǐng)域。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 加速器
    +關(guān)注

    關(guān)注

    2

    文章

    836

    瀏覽量

    39712
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4827

    瀏覽量

    106796

原文標(biāo)題:多項第一!Imagination神經(jīng)網(wǎng)絡(luò)加速器通過AIIA DNN benchmark評估

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計優(yōu)化方案

    特征圖保留不變,完成和所有相關(guān)卷積核點積以后再加載,最多復(fù)用 R*R*M 次。 3.不同網(wǎng)絡(luò)模型的效果 如圖所示,后者相對于前者,減少了連線資源和復(fù)雜度。 4.DNN加速器空間架構(gòu)片上存儲
    發(fā)表于 10-31 07:14

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定
    發(fā)表于 10-29 06:08

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    的數(shù)量級,而且生物軸突的延遲和神經(jīng)元的時間常數(shù)比數(shù)字電路的傳播和轉(zhuǎn)換延遲要大得多,AER 的工作方式和神經(jīng)網(wǎng)絡(luò)的特點相吻合,所以受生物啟發(fā)的神經(jīng)形態(tài)處理中的NoC或SNN
    發(fā)表于 10-24 07:34

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的些經(jīng)驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練個手寫數(shù)字識別的神經(jīng)
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重數(shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲內(nèi)。 在仿真環(huán)境下,可將其存于個文件
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?700次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)

    問題。因此,并行計算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實際應(yīng)用中對快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡(luò)并行
    的頭像 發(fā)表于 09-17 13:31 ?886次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計算與<b class='flag-5'>加速</b>技術(shù)

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制技術(shù)手冊

    的Maxim超低功耗微控制相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時功耗僅為微焦耳級。
    的頭像 發(fā)表于 05-08 10:16 ?600次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積
    的頭像 發(fā)表于 02-12 15:53 ?1307次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析
    的頭像 發(fā)表于 02-12 15:36 ?1581次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計算每層
    的頭像 發(fā)表于 02-12 15:18 ?1274次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、個或多個隱藏層和輸出層組成,
    的頭像 發(fā)表于 02-12 15:15 ?1340次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負責(zé)接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過層或多層神經(jīng)元對輸入數(shù)據(jù)進行加權(quán)求和,并
    的頭像 發(fā)表于 02-12 15:13 ?1518次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?2245次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法