chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>可編程邏輯>一種遞歸神經(jīng)網(wǎng)絡(luò)在FPGA平臺上的實(shí)現(xiàn)方案詳解

一種遞歸神經(jīng)網(wǎng)絡(luò)在FPGA平臺上的實(shí)現(xiàn)方案詳解

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦
熱點(diǎn)推薦

ARM與神經(jīng)網(wǎng)絡(luò)處理器通信方案的設(shè)計(jì)實(shí)現(xiàn)

 基于ARM芯片和FPGA的特點(diǎn),設(shè)計(jì)了一種ARM與FPGA人工神經(jīng)網(wǎng)本文首先介紹了人工神經(jīng)網(wǎng)絡(luò)的模型和算法以及FPGA實(shí)現(xiàn),并通過對網(wǎng)絡(luò)結(jié)構(gòu)的分析設(shè)計(jì)了FPGA端的數(shù)據(jù)存儲系統(tǒng)。然后分析了ARM
2015-08-10 10:54:512298

FPGA芯片用于神經(jīng)網(wǎng)絡(luò)算法優(yōu)化的設(shè)計(jì)實(shí)現(xiàn)方案

確定了算力的基礎(chǔ)上,盡量最大化硬件的計(jì)算和帶寬性能。經(jīng)歷了年多的理論學(xué)習(xí),開始第神經(jīng)網(wǎng)絡(luò)算法優(yōu)化的嘗試。之所以從FPGA開發(fā)者轉(zhuǎn)向算法的學(xué)習(xí),有幾個原因: 第神經(jīng)網(wǎng)絡(luò)AI芯片上的部署離不開算法的優(yōu)化。
2020-09-29 11:36:095773

FPGA實(shí)現(xiàn)LeNet-5卷積神經(jīng)網(wǎng)絡(luò)

,利用 FPGA 實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)成為了一種高效、低功耗的解決方案,特別適合于邊緣計(jì)算和嵌入式系統(tǒng)。本文將詳細(xì)介紹如何使用 FPGA 實(shí)現(xiàn) LeNet-5 網(wǎng)絡(luò),包括網(wǎng)絡(luò)結(jié)構(gòu)、FPGA 設(shè)計(jì)流程、優(yōu)化策略以及代碼示例。
2024-07-11 10:27:224074

一種基于FPGA的圖神經(jīng)網(wǎng)絡(luò)加速器解決方案

。因此,業(yè)界對GNN的硬件加速有著非常迫切的需求。盡管傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)硬件加速有很多種解決方案,但GNN的硬件加速還沒有得到充分的討論和研究。撰寫本白皮書時,谷歌(Google)和百度
2021-09-25 17:20:41

一種基于高效采樣算法的時序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)介紹

圖數(shù)據(jù)是一種非結(jié)構(gòu)化的數(shù)據(jù),但能夠蘊(yùn)含很多結(jié)構(gòu)化數(shù)據(jù)中無法蘊(yùn)含的信息。圖數(shù)據(jù)無處不在,世界上大部分?jǐn)?shù)據(jù)都能夠用圖數(shù)據(jù)來表達(dá)。為了高效的提取圖特征,圖神經(jīng)網(wǎng)絡(luò)一種非常重要的圖特征提取方式。圖神經(jīng)網(wǎng)絡(luò)
2022-09-28 10:34:13

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動駕駛儀的短時輔助模式到專職無人駕駛旅行的自動駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

遞歸神經(jīng)網(wǎng)絡(luò)(RNN)

文本中的個詞。RNN也是一種包含某特殊層的神經(jīng)網(wǎng)絡(luò),它并不是次處理所有數(shù)據(jù)而是通過循環(huán)來處理數(shù)據(jù)。由于RNN可以按順序處理數(shù)據(jù),因此可以使用不同長度的向量并生成不同長度的輸出。圖6.3提供了
2022-07-20 09:27:59

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

起,計(jì)算機(jī)就會判定這是只貓! C、遞歸神經(jīng)網(wǎng)絡(luò)遞歸神經(jīng)網(wǎng)絡(luò)一種深度神經(jīng)網(wǎng)絡(luò),它將相同的權(quán)重遞歸地應(yīng)用在神經(jīng)網(wǎng)絡(luò)架構(gòu)上,以拓?fù)渑判虻姆绞奖闅v給定結(jié)構(gòu),從而在大小可變的輸入結(jié)構(gòu)上可以做出結(jié)構(gòu)化的預(yù)測
2018-06-05 10:11:50

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何直沒有具體實(shí)現(xiàn)下:現(xiàn)看到個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

《 AI加速器架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第章卷積神經(jīng)網(wǎng)絡(luò)觀后感

連接塊是一種模塊,通常用于深度卷積神經(jīng)網(wǎng)絡(luò)中,特別是殘差網(wǎng)絡(luò)(Residual Network,ResNet)中廣泛使用,也是我比較熟悉的。組卷積塊是一種卷積神經(jīng)網(wǎng)絡(luò)中的模塊,其主要目的是將卷積操作
2023-09-11 20:34:01

【PYNQ-Z2申請】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動駕駛小車

作品簡介這次試用PYNQ-Z2作品“基于PYNQ平臺神經(jīng)網(wǎng)絡(luò)自動駕駛小車”,PYNQ平臺上對車載攝像頭圖像高速采集、預(yù)處理,并在FPGA上搭建神經(jīng)網(wǎng)絡(luò),使用圖像輸入生成小車運(yùn)動的控制信號,實(shí)現(xiàn)小車自動駕駛
2018-12-19 11:36:24

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

探索整個過程中資源利用的優(yōu)化使整個過程更加節(jié)能高效預(yù)計(jì)成果:1、PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路硬件上,特別是FPGA實(shí)現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動駕駛小車 - 項(xiàng)目規(guī)劃

小車運(yùn)動的控制信號,實(shí)現(xiàn)小車自動駕駛。初步實(shí)現(xiàn)方案中,為了快速實(shí)現(xiàn)整體功能,使用軟件神經(jīng)網(wǎng)絡(luò)作為控制器,使用單片機(jī)作為底盤電機(jī)的控制器。進(jìn)步的實(shí)現(xiàn)中,所有數(shù)據(jù)處理和底盤控制全部由Zynq FPGA
2019-03-02 23:10:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

一種常用的無監(jiān)督學(xué)習(xí)策略,使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每時刻只有個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

分享一種DTMF信號檢測器工程的應(yīng)用方案

基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF檢測算法基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼仿真結(jié)果分享一種DTMF信號檢測器工程的應(yīng)用方案
2021-06-03 07:03:11

分享一種用于神經(jīng)網(wǎng)絡(luò)處理的新8位浮點(diǎn)交換格式

速度增長,需要新的硬件和軟件創(chuàng)新來繼續(xù)平衡內(nèi)存,計(jì)算效率和帶寬。神經(jīng)網(wǎng)絡(luò) (NN) 的訓(xùn)練對于 AI 能力的持續(xù)提升至關(guān)重要,今天標(biāo)志著這演變的激動人心的步,Arm、英特爾和 NVIDIA 聯(lián)合
2022-09-15 15:15:46

卷積神經(jīng)網(wǎng)絡(luò)入門資料

卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學(xué)習(xí)任務(wù)上逐步提高。由于可以自動學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39

基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于神經(jīng)網(wǎng)絡(luò)混沌吸引子公鑰加密算法的FPGA實(shí)現(xiàn)

法是可以硬件實(shí)現(xiàn)的,并且具有較高的數(shù)據(jù)加密速度,時鐘頻率可達(dá)50 MHz以上【關(guān)鍵詞】:神經(jīng)網(wǎng)絡(luò);;混沌吸引子;;公鑰密碼;;FPGA【DOI】:CNKI:SUN:XDZK.0.2010-02-008
2010-04-24 09:15:41

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)

的激光雷達(dá)物體識別技術(shù)直難以嵌入式平臺上實(shí)時運(yùn)行。經(jīng)緯恒潤經(jīng)過潛心研發(fā),攻克了深度神經(jīng)網(wǎng)絡(luò)嵌入式平臺部署所面臨的算子定制與加速、量化策略、模型壓縮等難題,率先實(shí)現(xiàn)了高性能激光檢測神經(jīng)網(wǎng)絡(luò)并成功地嵌入式平臺(德州儀TI TDA4系列)上完成部署。系統(tǒng)功能目前該系統(tǒng):?支持接入禾賽Pandar 40和
2021-12-21 07:59:18

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是類深度神經(jīng)網(wǎng)絡(luò),處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對 FPGA實(shí)現(xiàn) CNN 做個可行性研究
2019-06-19 07:24:41

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識別手勢呢

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識別手勢呢?其過程是怎樣的?
2021-11-19 06:38:58

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案?

某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何移植個CNN神經(jīng)網(wǎng)絡(luò)FPGA中?

訓(xùn)練神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

(Digital Signal Processor)相比,現(xiàn)場可編程門陣列(Field Programma-ble Gate Array,FPGA)神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)上更具優(yōu)勢。DSP處理器處理時采用指令順序執(zhí)行
2019-08-08 06:11:30

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理器的通信方案

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

有人做過神經(jīng)網(wǎng)絡(luò)FPGA上的實(shí)現(xiàn)嗎?

例如BP神經(jīng)網(wǎng)絡(luò)
2018-03-07 19:44:24

一種測試平臺上的阻抗測試方案

一種測試平臺上的阻抗測試方案
2021-05-06 09:13:47

FPGA實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有
2022-10-24 16:10:50

脈沖耦合神經(jīng)網(wǎng)絡(luò)FPGA上的實(shí)現(xiàn)誰會?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)FPGA上的實(shí)現(xiàn)實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時達(dá)到最高的精度
2022-03-17 19:15:13

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

最高的精度。由此表明非局部模塊可以作為一種比較通用的基本組件,設(shè)計(jì)深度神經(jīng)網(wǎng)絡(luò)時使用。實(shí)驗(yàn)及結(jié)果在這節(jié)我們簡單介紹論文中描述的實(shí)驗(yàn)及結(jié)果。 視頻的基線模型是 ResNet-50 C2D。三維輸出映射
2018-11-12 14:52:50

一種改進(jìn)的遞歸神經(jīng)網(wǎng)絡(luò)盲均衡算法

提出了一種新的基于遞歸神經(jīng)網(wǎng)絡(luò)的快速收斂盲均衡算法。設(shè)計(jì)中采用觀測信號的四階統(tǒng)計(jì)量構(gòu)造代價函數(shù),簡化了系統(tǒng)的復(fù)雜度;利用實(shí)時遞歸學(xué)習(xí)算法對系統(tǒng)參數(shù)進(jìn)行動態(tài)調(diào)
2009-05-10 12:01:5012

基于神經(jīng)網(wǎng)絡(luò)PID控制的交流伺服系統(tǒng)

神經(jīng)網(wǎng)絡(luò)和PID 控制相結(jié)合,提出了一種基于對角遞歸神經(jīng)網(wǎng)絡(luò)整定的PID 控制策略,并將其應(yīng)用于交流伺服系統(tǒng)的控制。利用對角遞歸神經(jīng)網(wǎng)絡(luò)在線自適應(yīng)調(diào)整PID 控制器的參數(shù),
2009-07-30 09:40:1210

一種基于遞歸神經(jīng)網(wǎng)絡(luò)的自適應(yīng)控制方法研究

本文針對快速、多變量、強(qiáng)非線性的復(fù)雜系統(tǒng)的控制問題,強(qiáng)化學(xué)習(xí)方式的基礎(chǔ)上,提出一種新的自適應(yīng)控制方法。該方法沒有先驗(yàn)知識的條件下,基于遞歸神經(jīng)網(wǎng)絡(luò)并結(jié)合強(qiáng)
2009-08-13 08:36:5529

一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享方案

本文首先分析了人工神經(jīng)網(wǎng)絡(luò)和秘密共享的相通之處,闡明了用人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)秘密共享是可能的;其次給出了一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享的門限方案,詳細(xì)介紹了
2009-08-15 09:54:1715

對角遞歸神經(jīng)網(wǎng)絡(luò)控制的交流伺服系統(tǒng)

為了獲得伺服系統(tǒng)較高的跟蹤和魯棒性能,考慮摩擦、負(fù)載的時變性,提出了基于對角遞歸神經(jīng)網(wǎng)絡(luò)控制器的控制方案,改善系統(tǒng)的跟隨性和抗擾性。仿真結(jié)果表明,采用對角遞
2009-12-12 16:48:3410

一種BP神經(jīng)網(wǎng)絡(luò)改進(jìn)算法的研究及應(yīng)用

本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點(diǎn),并結(jié)合模擬退火算法局部搜索全局的特點(diǎn),提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:0512

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究 引 言    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了
2009-11-17 17:17:201428

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究 引言   人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線
2009-11-21 16:25:245007

基于FPGA的脈沖耦合神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)

針對脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)具有神經(jīng)元脈沖同步激發(fā)、適合硬件實(shí)現(xiàn)的特點(diǎn),提出了一種基于FPGA的PCNN實(shí)時處理系統(tǒng)。系統(tǒng)設(shè)計(jì)了時鐘分頻、串口通信、串并轉(zhuǎn)換、PCNN結(jié)構(gòu)和VGA顯示等功能
2015-12-21 10:16:246

基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測算法

蛋白質(zhì)二級結(jié)構(gòu)預(yù)測是結(jié)構(gòu)生物學(xué)中的個重要問題。針對八類蛋白質(zhì)二級結(jié)構(gòu)預(yù)測,提出了一種基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測算法。該算法通過雙向遞歸神經(jīng)網(wǎng)絡(luò)建模氨基酸間的局部和長程相互作用
2017-12-03 09:41:149

基于多尺度時間遞歸神經(jīng)網(wǎng)絡(luò)的人群異常事件檢測和定位方法

如何在人群密度大、變化快、存在大量遮擋的密集場景中實(shí)現(xiàn)可靠的人群事件檢測,是領(lǐng)域研究的難點(diǎn)和熱點(diǎn).密集場景時空建模的基礎(chǔ)上提出了一種基于多尺度時間遞歸神經(jīng)網(wǎng)絡(luò)的人群異常事件檢測和定位方法.首先
2018-01-21 11:31:540

谷歌最新AI算法 遞歸神經(jīng)網(wǎng)絡(luò)繪制大腦神經(jīng)圖像

谷歌研究人員使用了一種邊緣檢測算法,該算法可以識別神經(jīng)突(神經(jīng)元本體的分支)的邊界,以及一種復(fù)發(fā)性卷積神經(jīng)網(wǎng)絡(luò)(復(fù)發(fā)性神經(jīng)網(wǎng)絡(luò)個子類),該神經(jīng)網(wǎng)絡(luò)神經(jīng)元掃描中的像素聚集起來并突出顯示出來。
2018-07-20 09:45:422667

一種基于FPGA神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方案詳解

人工神經(jīng)網(wǎng)絡(luò)智能控制、模式識別、圖像處理等領(lǐng)域中應(yīng)用廣泛。進(jìn)行神經(jīng)網(wǎng)絡(luò)的應(yīng)用研究時,人們可以將神經(jīng)網(wǎng)絡(luò)模型或算法通用的計(jì)算機(jī)上軟件編程實(shí)現(xiàn),但很多時間浪費(fèi)分析指令、讀出寫入數(shù)據(jù)等,其實(shí)現(xiàn)效率
2018-09-30 16:14:5514133

一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu):膠囊網(wǎng)絡(luò)

膠囊網(wǎng)絡(luò)是 Geoffrey Hinton 提出的一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),為了解決卷積神經(jīng)網(wǎng)絡(luò)(ConvNets)的些缺點(diǎn),提出了膠囊網(wǎng)絡(luò)。
2019-02-02 09:25:006525

如何使用FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)硬件的設(shè)計(jì)方法

提出了一種可以靈活適應(yīng)不同的工程應(yīng)用中神經(jīng)網(wǎng)絡(luò)規(guī)模、拓?fù)浣Y(jié)構(gòu)、傳遞函數(shù)和學(xué)習(xí)算法上的變化,并能及時根據(jù)市場需求快速建立原型的神經(jīng)網(wǎng)絡(luò)硬件可重構(gòu)實(shí)現(xiàn)方法.對神經(jīng)網(wǎng)絡(luò)的可重構(gòu)特征進(jìn)行了分析,提出了三
2021-02-02 17:12:196

如何使用FPGA實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的仿真線設(shè)計(jì)

該文提出了一種采用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)仿真線的方法。首先采用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用離線訓(xùn)練后的BP神經(jīng)網(wǎng)絡(luò)逼近傳輸線的傳遞函數(shù),然后用STAM算法以較少的存儲空間實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的激勵函數(shù)近似
2021-02-03 16:26:0014

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)說明。
2021-04-28 11:24:2327

基于FPGA神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方法

基于FPGA神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方法說明。
2021-06-01 09:35:1651

一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案

針對上述問題,華中科技大學(xué)唐明教授、王亮教授團(tuán)隊(duì)提出了一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案,單個卷積神經(jīng)網(wǎng)絡(luò)(CNN)框架下實(shí)現(xiàn)了降噪和雙參量提取的集成化。
2022-10-28 14:49:402206

三個最流行神經(jīng)網(wǎng)絡(luò)

本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:181981

PyTorch教程之從零開始的遞歸神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

電子發(fā)燒友網(wǎng)站提供《PyTorch教程之從零開始的遞歸神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn).pdf》資料免費(fèi)下載
2023-06-05 09:55:210

PyTorch教程9.6之遞歸神經(jīng)網(wǎng)絡(luò)的簡潔實(shí)現(xiàn)

電子發(fā)燒友網(wǎng)站提供《PyTorch教程9.6之遞歸神經(jīng)網(wǎng)絡(luò)的簡潔實(shí)現(xiàn).pdf》資料免費(fèi)下載
2023-06-05 09:56:100

PyTorch教程10.3之深度遞歸神經(jīng)網(wǎng)絡(luò)

電子發(fā)燒友網(wǎng)站提供《PyTorch教程10.3之深度遞歸神經(jīng)網(wǎng)絡(luò).pdf》資料免費(fèi)下載
2023-06-05 15:12:030

PyTorch教程10.4之雙向遞歸神經(jīng)網(wǎng)絡(luò)

電子發(fā)燒友網(wǎng)站提供《PyTorch教程10.4之雙向遞歸神經(jīng)網(wǎng)絡(luò).pdf》資料免費(fèi)下載
2023-06-05 15:13:290

PyTorch教程16.2之情感分析:使用遞歸神經(jīng)網(wǎng)絡(luò)

電子發(fā)燒友網(wǎng)站提供《PyTorch教程16.2之情感分析:使用遞歸神經(jīng)網(wǎng)絡(luò).pdf》資料免費(fèi)下載
2023-06-05 10:55:070

淺析三主流深度神經(jīng)網(wǎng)絡(luò)

(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。2、什么是深度神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)是門多領(lǐng)域交叉學(xué)科,專門研究計(jì)算機(jī)怎樣模擬或實(shí)現(xiàn)人類的學(xué)習(xí)行為,以獲取
2023-05-17 09:59:194321

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:365026

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇
2023-10-17 17:48:581103

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)

電子發(fā)燒友網(wǎng)站提供《基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn).pdf》資料免費(fèi)下載
2023-10-23 10:21:250

卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

不同的神經(jīng)網(wǎng)絡(luò)模型,它們結(jié)構(gòu)、原理、應(yīng)用等方面都存在定的差異。本文將從多個方面對這兩神經(jīng)網(wǎng)絡(luò)進(jìn)行詳細(xì)的比較和分析。 引言 神經(jīng)網(wǎng)絡(luò)一種模擬人腦神經(jīng)元連接和信息傳遞的計(jì)算模型,它具有強(qiáng)大的非線性擬合能力和泛
2024-07-02 14:24:037112

卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)一種前饋神經(jīng)網(wǎng)絡(luò),其
2024-07-02 16:47:161732

卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理、結(jié)構(gòu)
2024-07-03 10:49:091839

循環(huán)神經(jīng)網(wǎng)絡(luò)遞歸神經(jīng)網(wǎng)絡(luò)的區(qū)別

處理序列數(shù)據(jù)方面具有顯著的優(yōu)勢,但它們結(jié)構(gòu)和工作原理上存在些關(guān)鍵的區(qū)別。 循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN) 1.1 RNN的結(jié)構(gòu) 循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò),其核心思想是將前個時間步的輸出
2024-07-04 14:19:201990

遞歸神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)、特點(diǎn)、優(yōu)缺點(diǎn)及適用場景

遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,簡稱RNN)是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),其核心特點(diǎn)是能夠處理序列數(shù)據(jù),并對序列中的信息進(jìn)行記憶和傳遞。RNN自然語言處理、語音
2024-07-04 14:52:563136

遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

。 遞歸神經(jīng)網(wǎng)絡(luò)的概念 遞歸神經(jīng)網(wǎng)絡(luò)一種具有短期記憶功能的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù),如時間序列、文本、語音等。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)不同,遞歸神經(jīng)網(wǎng)絡(luò)神經(jīng)元之間存在循環(huán)連接,使得網(wǎng)絡(luò)能夠處理序列數(shù)據(jù)時保持狀態(tài)。 遞歸神經(jīng)網(wǎng)絡(luò)的原理 遞歸神經(jīng)網(wǎng)絡(luò)的核心原理是將前個時間步的輸出作為
2024-07-04 14:54:592065

遞歸神經(jīng)網(wǎng)絡(luò)主要應(yīng)用于哪種類型數(shù)據(jù)

遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù)。它在許多領(lǐng)域都有廣泛的應(yīng)用,以下是對遞歸神經(jīng)網(wǎng)絡(luò)應(yīng)用領(lǐng)域的介紹。 自然語言
2024-07-04 14:58:141579

人工神經(jīng)網(wǎng)絡(luò)模型是一種什么模型

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而產(chǎn)生的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它由大量的節(jié)點(diǎn)(或稱為神經(jīng)元)相互連接而成
2024-07-04 16:57:432432

遞歸神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)樣嗎

神經(jīng)網(wǎng)絡(luò)一種基于樹結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,它通過遞歸地將輸入數(shù)據(jù)分解為更小的子問題來處理序列數(shù)據(jù)。RvNN的核心思想是將復(fù)雜的序列問題
2024-07-05 09:28:472105

簡述遞歸神經(jīng)網(wǎng)絡(luò)的計(jì)算過程

遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),其核心特點(diǎn)是能夠處理序列數(shù)據(jù),并且能夠記憶之前處理過的信息。RNN自然語言處理、語音識別
2024-07-05 09:30:381188

遞歸神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)形式主要分為

結(jié)構(gòu)形式。 Elman網(wǎng)絡(luò) Elman網(wǎng)絡(luò)一種基本的遞歸神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),由Elman于1990年提出。其結(jié)構(gòu)主要包括輸入層、隱藏層和輸出層,其中隱藏層具有時間延遲單元,可以存儲前時刻的隱藏狀態(tài)。Elman網(wǎng)絡(luò)的基本原理是將前時刻的隱藏狀態(tài)作為當(dāng)前時刻的額外輸入,從而實(shí)現(xiàn)
2024-07-05 09:32:521274

rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)神經(jīng)網(wǎng)絡(luò)的介紹
2024-07-05 09:52:361512

如何在FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)

可編程門陣列(FPGA)作為一種靈活、高效的硬件實(shí)現(xiàn)方式,為神經(jīng)網(wǎng)絡(luò)的加速提供了新的思路。本文將從FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的基本原理、關(guān)鍵技術(shù)、實(shí)現(xiàn)流程以及應(yīng)用前景等方面進(jìn)行詳細(xì)闡述。
2024-07-10 17:01:424397

遞歸神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法

遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,簡稱RNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),其特點(diǎn)在于能夠處理具有層次或樹狀結(jié)構(gòu)的數(shù)據(jù),并通過遞歸的方式對這些數(shù)據(jù)進(jìn)行建模。與循環(huán)神經(jīng)網(wǎng)絡(luò)
2024-07-10 17:02:431224

遞歸神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)

遞歸神經(jīng)網(wǎng)絡(luò)一種旨在處理分層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),使其特別適合涉及樹狀或嵌套數(shù)據(jù)的任務(wù)。這些網(wǎng)絡(luò)明確地模擬了層次結(jié)構(gòu)中的關(guān)系和依賴關(guān)系,例如語言中的句法結(jié)構(gòu)或圖像中的層次表示。它使用遞歸操作來分層處理信息,有效地捕獲上下文信息。
2024-07-10 17:21:341815

分享幾個用FPGA實(shí)現(xiàn)的小型神經(jīng)網(wǎng)絡(luò)

今天我們分享幾個用FPGA實(shí)現(xiàn)的小型神經(jīng)網(wǎng)絡(luò),側(cè)重應(yīng)用。
2024-07-24 09:30:162389

FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

、低功耗等特點(diǎn),逐漸成為深度神經(jīng)網(wǎng)絡(luò)邊緣計(jì)算和設(shè)備端推理的重要硬件平臺。本文將詳細(xì)探討FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,包括其優(yōu)勢、設(shè)計(jì)流程、關(guān)鍵技術(shù)以及實(shí)際應(yīng)用案例。
2024-07-24 10:42:461566

已全部加載完成