chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>可編程邏輯>一種基于FPGA的神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方案詳解

一種基于FPGA的神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方案詳解

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦
熱點(diǎn)推薦

ARM與神經(jīng)網(wǎng)絡(luò)處理器通信方案的設(shè)計(jì)實(shí)現(xiàn)

 基于ARM芯片和FPGA的特點(diǎn),設(shè)計(jì)了一種ARM與FPGA人工神經(jīng)網(wǎng)本文首先介紹了人工神經(jīng)網(wǎng)絡(luò)的模型和算法以及FPGA實(shí)現(xiàn),并通過對(duì)網(wǎng)絡(luò)結(jié)構(gòu)的分析設(shè)計(jì)了FPGA端的數(shù)據(jù)存儲(chǔ)系統(tǒng)。然后分析了ARM
2015-08-10 10:54:512298

FPGA芯片用于神經(jīng)網(wǎng)絡(luò)算法優(yōu)化的設(shè)計(jì)實(shí)現(xiàn)方案

前言 AI芯片(這里只談FPGA芯片用于神經(jīng)網(wǎng)絡(luò)加速)的優(yōu)化主要有三個(gè)方面:算法優(yōu)化,編譯器優(yōu)化以及硬件優(yōu)化。算法優(yōu)化減少的是神經(jīng)網(wǎng)絡(luò)的算力,它確定了神經(jīng)網(wǎng)絡(luò)部署實(shí)現(xiàn)效率的上限。編譯器優(yōu)化和硬件優(yōu)化
2020-09-29 11:36:095773

FPGA實(shí)現(xiàn)LeNet-5卷積神經(jīng)網(wǎng)絡(luò)

,利用 FPGA 實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)成為了一種高效、低功耗的解決方案,特別適合于邊緣計(jì)算和嵌入式系統(tǒng)。本文將詳細(xì)介紹如何使用 FPGA 實(shí)現(xiàn) LeNet-5 網(wǎng)絡(luò),包括網(wǎng)絡(luò)結(jié)構(gòu)、FPGA 設(shè)計(jì)流程、優(yōu)化策略以及代碼示例。
2024-07-11 10:27:224074

詳解物理信息神經(jīng)網(wǎng)絡(luò)

物理信息神經(jīng)網(wǎng)絡(luò) (PINN) 是一種神經(jīng)網(wǎng)絡(luò),它將微分方程描述的物理定律納入其損失函數(shù)中,以引導(dǎo)學(xué)習(xí)過程得出更符合基本物理定律的解。
2024-12-05 16:50:5715102

一種基于FPGA的圖神經(jīng)網(wǎng)絡(luò)加速器解決方案

。因此,業(yè)界對(duì)GNN的硬件加速有著非常迫切的需求。盡管傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)硬件加速有很多種解決方案,但GNN的硬件加速還沒有得到充分的討論和研究。在撰寫本白皮書時(shí),谷歌(Google)和百度
2021-09-25 17:20:41

一種基于高效采樣算法的時(shí)序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)介紹

圖數(shù)據(jù)是一種非結(jié)構(gòu)化的數(shù)據(jù),但能夠蘊(yùn)含很多結(jié)構(gòu)化數(shù)據(jù)中無法蘊(yùn)含的信息。圖數(shù)據(jù)無處不在,世界上大部分?jǐn)?shù)據(jù)都能夠用圖數(shù)據(jù)來表達(dá)。為了高效的提取圖特征,圖神經(jīng)網(wǎng)絡(luò)一種非常重要的圖特征提取方式。圖神經(jīng)網(wǎng)絡(luò)
2022-09-28 10:34:13

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何直沒有具體實(shí)現(xiàn)下:現(xiàn)看到個(gè)簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

《 AI加速器架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第章卷積神經(jīng)網(wǎng)絡(luò)觀后感

對(duì)應(yīng)的神經(jīng)網(wǎng)絡(luò)有哪些,也看到了自己在k210中用到的FAST RCNN和RestNet18分類網(wǎng)絡(luò),需要保證硬件實(shí)現(xiàn)和算法致,這樣才事半功倍,否則,可能會(huì)差別比較大。對(duì)于神經(jīng)網(wǎng)絡(luò)算法的執(zhí)行,加速器
2023-09-11 20:34:01

【PYNQ-Z2申請(qǐng)】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別

項(xiàng)目名稱:基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別試用計(jì)劃:申請(qǐng)理由:本人為名嵌入式軟件工程師,對(duì)FPGA段時(shí)間的接觸,基于FPGA設(shè)計(jì)過簡單的ASCI數(shù)字芯片。目前正好在學(xué)習(xí)基于python
2019-01-09 14:48:59

【PYNQ-Z2申請(qǐng)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車

項(xiàng)目名稱:基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車試用計(jì)劃:、本人技術(shù)背景本人有四年以上的嵌入式開發(fā)和三年以上的機(jī)器視覺領(lǐng)域項(xiàng)目實(shí)踐經(jīng)驗(yàn),在計(jì)算機(jī)視覺與FPGA數(shù)字圖像處理方面有較多的理論研究與項(xiàng)目實(shí)踐
2018-12-19 11:36:24

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

探索整個(gè)過程中資源利用的優(yōu)化使整個(gè)過程更加節(jié)能高效預(yù)計(jì)成果:1、在PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對(duì)以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路在硬件上,特別是在FPGA實(shí)現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車 - 項(xiàng)目規(guī)劃

小車運(yùn)動(dòng)的控制信號(hào),實(shí)現(xiàn)小車自動(dòng)駕駛。在初步實(shí)現(xiàn)方案中,為了快速實(shí)現(xiàn)整體功能,使用軟件神經(jīng)網(wǎng)絡(luò)作為控制器,使用單片機(jī)作為底盤電機(jī)的控制器。在進(jìn)步的實(shí)現(xiàn)中,所有數(shù)據(jù)處理和底盤控制全部由Zynq FPGA
2019-03-02 23:10:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每時(shí)刻只有個(gè)競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識(shí)別層、識(shí)別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

分享一種400×25×2的三層BP神經(jīng)網(wǎng)絡(luò)

本文首先簡單的選取了少量的樣本并進(jìn)行樣本歸化,這樣就得到了可供訓(xùn)練的訓(xùn)練集和測試集。然后訓(xùn)練了400×25×2的三層BP神經(jīng)網(wǎng)絡(luò),最后對(duì)最初步的模型進(jìn)行了誤差分析并找到了一種效果顯著的提升方法!
2021-07-12 06:49:37

分享一種DTMF信號(hào)檢測器工程的應(yīng)用方案

基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF檢測算法基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼仿真結(jié)果分享一種DTMF信號(hào)檢測器工程的應(yīng)用方案
2021-06-03 07:03:11

卷積神經(jīng)網(wǎng)絡(luò)入門資料

卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學(xué)習(xí)任務(wù)上逐步提高。由于可以自動(dòng)學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動(dòng)控制卡該如何去設(shè)計(jì)?

本文設(shè)計(jì)了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動(dòng)控制卡。
2021-06-03 06:05:09

基于神經(jīng)網(wǎng)絡(luò)混沌吸引子公鑰加密算法的FPGA實(shí)現(xiàn)

法是可以硬件實(shí)現(xiàn)的,并且具有較高的數(shù)據(jù)加密速度,時(shí)鐘頻率可達(dá)50 MHz以上【關(guān)鍵詞】:神經(jīng)網(wǎng)絡(luò);;混沌吸引子;;公鑰密碼;;FPGA【DOI】:CNKI:SUN:XDZK.0.2010-02-008
2010-04-24 09:15:41

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對(duì)系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法解析

本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA實(shí)現(xiàn)驗(yàn)證方案,詳細(xì)討論了實(shí)現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計(jì)。
2021-05-06 07:01:59

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

,看FPGA 是否適用于解決大規(guī)模機(jī)器學(xué)習(xí)問題。卷積神經(jīng)網(wǎng)絡(luò)一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識(shí)別任務(wù)。圖像識(shí)別、語音識(shí)別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。
2019-06-19 07:24:41

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識(shí)別手勢呢

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識(shí)別手勢呢?其過程是怎樣的?
2021-11-19 06:38:58

如何利用SoPC實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制器?

不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)?,F(xiàn)場可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制器的硬件實(shí)現(xiàn)提供了新的載體。
2019-08-12 06:25:35

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案?

某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何移植個(gè)CNN神經(jīng)網(wǎng)絡(luò)FPGA中?

訓(xùn)練個(gè)神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

(Digital Signal Processor)相比,現(xiàn)場可編程門陣列(Field Programma-ble Gate Array,FPGA)在神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)上更具優(yōu)勢。DSP處理器在處理時(shí)采用指令順序執(zhí)行
2019-08-08 06:11:30

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理器的通信方案?

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

求利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序

誰有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序啊(我用的版本是8.6的 )
2012-11-26 14:54:59

求基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程,最好有程序哈,謝謝?。?/div>
2012-12-10 14:55:50

FPGA實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50

簡單神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

最簡單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36

脈沖耦合神經(jīng)網(wǎng)絡(luò)FPGA上的實(shí)現(xiàn)誰會(huì)?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14

請(qǐng)問fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢

請(qǐng)問fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢?用其他的不行嗎
2022-07-25 14:37:58

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13

一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享方案

本文首先分析了人工神經(jīng)網(wǎng)絡(luò)和秘密共享的相通之處,闡明了用人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)秘密共享是可能的;其次給出了一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享的門限方案,詳細(xì)介紹了
2009-08-15 09:54:1715

一種BP神經(jīng)網(wǎng)絡(luò)改進(jìn)算法的研究及應(yīng)用

本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點(diǎn),并結(jié)合模擬退火算法局部搜索全局的特點(diǎn),提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:0512

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究 引 言    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了
2009-11-17 17:17:201428

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究

基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究 引言   人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線
2009-11-21 16:25:245007

基于FPGA的脈沖耦合神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)

針對(duì)脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)具有神經(jīng)元脈沖同步激發(fā)、適合硬件實(shí)現(xiàn)的特點(diǎn),提出了一種基于FPGA的PCNN實(shí)時(shí)處理系統(tǒng)。系統(tǒng)設(shè)計(jì)了時(shí)鐘分頻、串口通信、串并轉(zhuǎn)換、PCNN結(jié)構(gòu)和VGA顯示等功能
2015-12-21 10:16:246

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法_曹猛
2017-01-07 19:08:430

人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)描述詳解

Neural Network,ANN)簡稱神經(jīng)網(wǎng)絡(luò)(NN),是基于生物學(xué)中神經(jīng)網(wǎng)絡(luò)的基本原理,在理解和抽象了人腦結(jié)構(gòu)和外界刺激響應(yīng)機(jī)制后,以網(wǎng)絡(luò)拓?fù)渲R(shí)為理論基礎(chǔ),模擬人腦的神經(jīng)系統(tǒng)對(duì)復(fù)雜信息的處理機(jī)制的一種數(shù)學(xué)模型。
2017-11-15 15:41:3940858

基于FPGA神經(jīng)網(wǎng)絡(luò)算法的設(shè)計(jì)

FPGA實(shí)現(xiàn)神經(jīng)元自適應(yīng)PID控制器的方法,并對(duì)基于BP神經(jīng)網(wǎng)絡(luò)整定的PID控制器的FPGA設(shè)計(jì)做了概述。
2017-11-23 15:31:016049

什么是模糊神經(jīng)網(wǎng)絡(luò)_模糊神經(jīng)網(wǎng)絡(luò)原理詳解

模糊神經(jīng)網(wǎng)絡(luò)就是模糊理論同神經(jīng)網(wǎng)絡(luò)相結(jié)合的產(chǎn)物,它匯集了神經(jīng)網(wǎng)絡(luò)與模糊理論的優(yōu)點(diǎn),集學(xué)習(xí)、聯(lián)想、識(shí)別、信息處理于體。
2017-12-29 14:40:4050582

一種遞歸神經(jīng)網(wǎng)絡(luò)FPGA平臺(tái)上的實(shí)現(xiàn)方案詳解

計(jì)算量的方案。本文將闡釋深度學(xué)習(xí)和FPGA各自的結(jié)構(gòu)特點(diǎn)以及為什么用FPGA加速深度學(xué)習(xí)是有效的,并且將介紹一種遞歸神經(jīng)網(wǎng)絡(luò)(RNN)在FPGA平臺(tái)上的實(shí)現(xiàn)方案。
2018-09-12 16:53:302511

一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu):膠囊網(wǎng)絡(luò)

膠囊網(wǎng)絡(luò)是 Geoffrey Hinton 提出的一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),為了解決卷積神經(jīng)網(wǎng)絡(luò)(ConvNets)的些缺點(diǎn),提出了膠囊網(wǎng)絡(luò)。
2019-02-02 09:25:006525

如何使用FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)硬件的設(shè)計(jì)方法

提出了一種可以靈活適應(yīng)不同的工程應(yīng)用中神經(jīng)網(wǎng)絡(luò)在規(guī)模、拓?fù)浣Y(jié)構(gòu)、傳遞函數(shù)和學(xué)習(xí)算法上的變化,并能及時(shí)根據(jù)市場需求快速建立原型的神經(jīng)網(wǎng)絡(luò)硬件可重構(gòu)實(shí)現(xiàn)方法.對(duì)神經(jīng)網(wǎng)絡(luò)的可重構(gòu)特征進(jìn)行了分析,提出了三
2021-02-02 17:12:196

如何使用FPGA實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的仿真線設(shè)計(jì)

該文提出了一種采用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)仿真線的方法。首先采用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用離線訓(xùn)練后的BP神經(jīng)網(wǎng)絡(luò)逼近傳輸線的傳遞函數(shù),然后用STAM算法以較少的存儲(chǔ)空間實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的激勵(lì)函數(shù)近似
2021-02-03 16:26:0014

一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法

為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對(duì)網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計(jì)基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對(duì)少量步數(shù)訓(xùn)練和充分訓(xùn)練2
2021-03-16 14:05:463

一種攜帶歷史元素的循環(huán)神經(jīng)網(wǎng)絡(luò)推薦模型

動(dòng)態(tài)推薦系統(tǒng)通過學(xué)習(xí)動(dòng)態(tài)變化的興趣特征來考慮推薦系統(tǒng)中的動(dòng)態(tài)因素,實(shí)現(xiàn)推薦任務(wù)隨著時(shí)間變化而實(shí)時(shí)更新。該文提出一種攜帶歷史元素的循環(huán)神經(jīng)網(wǎng)絡(luò)( ecurrent Neural Net works
2021-03-31 09:31:515

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)說明。
2021-04-28 11:24:2327

基于FPGA神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方法

基于FPGA神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方法說明。
2021-06-01 09:35:1651

一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案

針對(duì)上述問題,華中科技大學(xué)唐明教授、王亮教授團(tuán)隊(duì)提出了一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案,在單個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)框架下實(shí)現(xiàn)了降噪和雙參量提取的集成化。
2022-10-28 14:49:402206

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是個(gè)用于圖像和語音識(shí)別的深度學(xué)習(xí)技術(shù)。它是一種專門為處理
2023-08-21 16:41:407580

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識(shí)別、語音識(shí)別等領(lǐng)域
2023-08-21 16:49:462798

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:365026

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:186053

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型在線更新方案之?dāng)?shù)據(jù)處理篇

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型在線更新方案之?dāng)?shù)據(jù)處理篇
2023-10-17 18:06:471019

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇
2023-10-17 17:48:581103

基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)

電子發(fā)燒友網(wǎng)站提供《基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn).pdf》資料免費(fèi)下載
2023-10-23 10:21:250

卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

不同的神經(jīng)網(wǎng)絡(luò)模型,它們?cè)诮Y(jié)構(gòu)、原理、應(yīng)用等方面都存在定的差異。本文將從多個(gè)方面對(duì)這兩神經(jīng)網(wǎng)絡(luò)進(jìn)行詳細(xì)的比較和分析。 引言 神經(jīng)網(wǎng)絡(luò)一種模擬人腦神經(jīng)元連接和信息傳遞的計(jì)算模型,它具有強(qiáng)大的非線性擬合能力和泛
2024-07-02 14:24:037112

卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)一種前饋神經(jīng)網(wǎng)絡(luò),其
2024-07-02 16:47:161732

卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

、訓(xùn)練過程以及應(yīng)用場景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)一種前饋深度學(xué)習(xí)模型,其核心思想是利用卷積操作提取輸入數(shù)據(jù)的局部特征,并通過多層結(jié)構(gòu)進(jìn)行特征的逐層抽象和組合,最終實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類或回歸。 1.2 卷積神經(jīng)網(wǎng)絡(luò)的特
2024-07-03 09:15:281334

bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

結(jié)構(gòu)、原理、應(yīng)用場景等方面都存在定的差異。以下是對(duì)這兩神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過權(quán)重連接,并通過激活函數(shù)進(jìn)行非線性轉(zhuǎn)換。BP神經(jīng)網(wǎng)絡(luò)通過反向傳播算法進(jìn)行訓(xùn)練,通過調(diào)整權(quán)重和偏置來最小化損失函數(shù)。 卷積神經(jīng)網(wǎng)絡(luò)
2024-07-03 10:12:473377

卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理、結(jié)構(gòu)
2024-07-03 10:49:091839

神經(jīng)網(wǎng)絡(luò)反向傳播算法的原理、數(shù)學(xué)推導(dǎo)及實(shí)現(xiàn)步驟

傳播算法的原理、數(shù)學(xué)推導(dǎo)、實(shí)現(xiàn)步驟以及在深度學(xué)習(xí)中的應(yīng)用。 神經(jīng)網(wǎng)絡(luò)概述 神經(jīng)網(wǎng)絡(luò)一種受人腦啟發(fā)的計(jì)算模型,由大量的神經(jīng)元(或稱為節(jié)點(diǎn))組成,每個(gè)神經(jīng)元與其他神經(jīng)元通過權(quán)重連接。神經(jīng)網(wǎng)絡(luò)可以分為輸入層、隱藏層和輸出層。輸入層接收外部輸入數(shù)據(jù)
2024-07-03 11:16:052775

循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

結(jié)構(gòu)。它們?cè)谔幚聿煌愋偷臄?shù)據(jù)和解決不同問題時(shí)具有各自的優(yōu)勢和特點(diǎn)。本文將從多個(gè)方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它可以處理序列數(shù)據(jù),如時(shí)間序列、文本、音頻等。RNN的核心思想是將前個(gè)時(shí)間步的輸出作為下個(gè)時(shí)間步的輸入,從而實(shí)
2024-07-04 14:24:512764

遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

。 遞歸神經(jīng)網(wǎng)絡(luò)的概念 遞歸神經(jīng)網(wǎng)絡(luò)一種具有短期記憶功能的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù),如時(shí)間序列、文本、語音等。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)不同,遞歸神經(jīng)網(wǎng)絡(luò)神經(jīng)元之間存在循環(huán)連接,使得網(wǎng)絡(luò)能夠在處理序列數(shù)據(jù)時(shí)保持狀態(tài)。 遞歸神經(jīng)網(wǎng)絡(luò)的原理 遞歸神經(jīng)網(wǎng)絡(luò)的核心原理是將前個(gè)時(shí)間步的輸出作為
2024-07-04 14:54:592065

人工神經(jīng)網(wǎng)絡(luò)模型是一種什么模型

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而產(chǎn)生的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它由大量的節(jié)點(diǎn)(或稱為神經(jīng)元)相互連接而成
2024-07-04 16:57:432432

遞歸神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)樣嗎

神經(jīng)網(wǎng)絡(luò)一種基于樹結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,它通過遞歸地將輸入數(shù)據(jù)分解為更小的子問題來處理序列數(shù)據(jù)。RvNN的核心思想是將復(fù)雜的序列問題
2024-07-05 09:28:472105

rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)神經(jīng)網(wǎng)絡(luò)的介紹
2024-07-05 09:52:361512

如何在FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)

可編程門陣列(FPGA)作為一種靈活、高效的硬件實(shí)現(xiàn)方式,為神經(jīng)網(wǎng)絡(luò)的加速提供了新的思路。本文將從FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的基本原理、關(guān)鍵技術(shù)、實(shí)現(xiàn)流程以及應(yīng)用前景等方面進(jìn)行詳細(xì)闡述。
2024-07-10 17:01:424397

遞歸神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法

遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,簡稱RNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),其特點(diǎn)在于能夠處理具有層次或樹狀結(jié)構(gòu)的數(shù)據(jù),并通過遞歸的方式對(duì)這些數(shù)據(jù)進(jìn)行建模。與循環(huán)神經(jīng)網(wǎng)絡(luò)
2024-07-10 17:02:431224

神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)的方法和技術(shù)

神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)是人工智能領(lǐng)域的個(gè)重要研究方向,旨在通過設(shè)計(jì)專門的硬件來加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和推理過程,提高計(jì)算效率和能效比。以下將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)的方法和技術(shù),并附上相關(guān)的代碼示例。
2024-07-15 10:47:483048

分享幾個(gè)用FPGA實(shí)現(xiàn)的小型神經(jīng)網(wǎng)絡(luò)

今天我們分享幾個(gè)用FPGA實(shí)現(xiàn)的小型神經(jīng)網(wǎng)絡(luò),側(cè)重應(yīng)用。
2024-07-24 09:30:162389

已全部加載完成