chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>斯坦福探索深度神經(jīng)網(wǎng)絡(luò)可解釋性 決策樹是關(guān)鍵

斯坦福探索深度神經(jīng)網(wǎng)絡(luò)可解釋性 決策樹是關(guān)鍵

123456下一頁全文

本文導(dǎo)航

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦
熱點(diǎn)推薦

機(jī)器學(xué)習(xí)模型可解釋性的結(jié)果分析

模型的可解釋性是機(jī)器學(xué)習(xí)領(lǐng)域的一個重要分支,隨著 AI 應(yīng)用范圍的不斷擴(kuò)大,人們越來越不滿足于模型的黑盒特性,與此同時,金融、自動駕駛等領(lǐng)域的法律法規(guī)也對模型的可解釋性提出了更高的要求,在可解釋
2023-09-28 10:17:151704

什么是“可解釋的”? 可解釋性AI不能解釋什么

通過建立既可解釋又準(zhǔn)確的模型來改良這種錯誤的二分法。關(guān)鍵是將神經(jīng)網(wǎng)絡(luò)決策樹相結(jié)合,在使用神經(jīng)網(wǎng)絡(luò)進(jìn)行低級決策時保留高級的可解釋性。
2020-05-31 10:51:449211

決策樹:技術(shù)全解與案例實(shí)戰(zhàn)

決策樹算法是機(jī)器學(xué)習(xí)領(lǐng)域的基石之一,其強(qiáng)大的數(shù)據(jù)分割能力讓它在各種預(yù)測和分類問題中扮演著重要的角色。
2023-12-13 09:49:562520

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:323474

決策樹在機(jī)器學(xué)習(xí)的理論學(xué)習(xí)與實(shí)踐

決策樹在機(jī)器學(xué)習(xí)的理論學(xué)習(xí)與實(shí)踐
2019-09-20 12:48:44

決策樹的生成資料

在本文中,我們將討論一種監(jiān)督式學(xué)習(xí)算法。最新一代意法半導(dǎo)體 MEMS 傳感器內(nèi)置一個基于決策樹分類器的機(jī)器學(xué)習(xí)核心(MLC)。這些產(chǎn)品很容易通過后綴中的 X 來識別(例如,LSM6DSOX)。這種
2023-09-08 06:50:22

斯坦福cs231n編程作業(yè)之k近鄰算法

深度學(xué)習(xí)斯坦福cs231n編程作業(yè)#1 --- k近鄰算法(k-NN)
2020-05-07 12:03:37

斯坦福開發(fā)過熱自動斷電電池

導(dǎo)致起火。開發(fā)電池的斯坦福教授  在斯坦福開發(fā)的新電池中,研究人員采用聚乙烯薄膜材料,薄膜上嵌入了鎳磁粉,它會形成納米級的突起。研究人員在突起部分覆蓋石墨烯導(dǎo)電材料,讓電流可以從表面通過。當(dāng)溫度
2016-01-12 11:57:19

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

DG645 斯坦福 SRS DG645 延遲發(fā)生器 現(xiàn)金回收

DG645 斯坦福 SRS DG645 延遲發(fā)生器 現(xiàn)金回收 歐陽R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠或個人、庫存閑置
2022-01-11 10:08:52

ML之決策樹與隨機(jī)森林

ML--決策樹與隨機(jī)森林
2020-07-08 12:31:39

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

介紹支持向量機(jī)與決策樹集成等模型的應(yīng)用

本文主要介紹支持向量機(jī)、k近鄰、樸素貝葉斯分類 、決策樹決策樹集成等模型的應(yīng)用。講解了支持向量機(jī)SVM線性與非線性模型的適用環(huán)境,并對核函數(shù)技巧作出深入的分析,對線性Linear核函數(shù)、多項(xiàng)式
2021-09-01 06:57:36

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet在研發(fā)的時候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造的把模型拆解在兩張顯卡中,架構(gòu)如下:1.第一層是卷積層,針對224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

關(guān)于決策樹,這些知識點(diǎn)不可錯過

可以實(shí)現(xiàn)對未知的數(shù)據(jù)進(jìn)行高效分類。從開頭狼人殺的例子中也可以看出,決策樹模型具有較好的可讀和描述,能夠幫助我們更高效率地去分析問題。舉個例子,普通人去銀行貸款的時候,銀行會根據(jù)相應(yīng)條件,來判斷貸款人
2018-05-23 09:38:48

關(guān)于斯坦福的CNTFET的問題

之前下載了斯坦福2015年的CNTFET VS model,是.va的文件,不知道怎么用啊,該怎么通過cadence的pspice進(jìn)行仿真啊,求指點(diǎn)
2018-01-26 13:47:28

分類與回歸方法之決策樹

統(tǒng)計(jì)學(xué)習(xí)方法決策樹
2019-11-05 13:40:43

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識別

我們可以對神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識別的潛力。關(guān)鍵詞識別
2021-07-26 09:46:37

哪位大神能找到斯坦福 EE214B/314A 授課視頻資源?

求助,哪位大神能找到斯坦福EE214B/314A授課視頻資源?
2021-06-22 07:41:41

回收新舊 斯坦福SRS DG645 延遲發(fā)生器

回收新舊 斯坦福SRS DG645 延遲發(fā)生器 歐陽R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠或個人、庫存閑置、二手儀器及附件
2021-07-14 10:34:14

基于決策樹的CART算法識別印第安人糖尿病患者

利用決策樹中CART算法識別印第安人糖尿病患者
2019-05-06 12:16:27

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行;信息處理和存儲單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號處理器DSP
2019-08-08 06:11:30

怎樣使用UNICO生成具有多個決策樹的UCF文件呢

使用 UNICO(v9.10.0.0),生成具有多個決策樹的 UCF 文件的過程似乎是:1.加載所有決策樹的所有測試數(shù)據(jù),像對單個一樣標(biāo)記每個數(shù)據(jù)集(大概標(biāo)簽需要在所有中是唯一的)2.使用MLC
2022-12-26 06:30:11

機(jī)器學(xué)習(xí)的決策樹介紹

機(jī)器學(xué)習(xí)——決策樹算法分析
2020-04-02 11:48:38

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

決策樹技術(shù)在汽車銷售中的應(yīng)用

介紹了決策樹分類技術(shù),并用其對汽車銷售企業(yè)的調(diào)查問卷進(jìn)行數(shù)據(jù)分析,挖掘出最近一年內(nèi)有購車意愿的客戶的特征,從而提高營銷的成功率。證明了決策樹數(shù)據(jù)挖掘技術(shù)在汽車
2009-09-09 15:49:0813

一個基于粗集的決策樹規(guī)則提取算法

一個基于粗集的決策樹規(guī)則提取算法:摘要:決策樹是數(shù)據(jù)挖掘任務(wù)中分類的常用方法。在構(gòu)造決策樹的過程中,分離屬性的選擇標(biāo)準(zhǔn)直接影響到分類的效果,傳統(tǒng)的決策樹算法往往
2009-10-10 15:13:3412

基于決策樹與相異度的離群數(shù)據(jù)挖掘方法

在數(shù)據(jù)挖掘中我們往往會忽略離群數(shù)據(jù),可是這些數(shù)據(jù)卻往往包含重要的信息。本文采用了將決策樹與相異度相結(jié)合的方式進(jìn)行離群數(shù)據(jù)的挖掘。通過計(jì)算決策樹中各屬性的信息
2010-01-15 14:28:055

電子稱重儀表決策樹建模研究

引入了基于粗糙集理論的屬性約簡進(jìn)行屬性的降噪和排序處理,然后結(jié)合決策樹理論的C4.5算法來對自診斷電子稱重儀表進(jìn)行分析,取信息增益率最大的結(jié)點(diǎn)作為決策樹的根,以此使分裂
2011-10-08 14:43:1024

改進(jìn)決策樹算法的應(yīng)用研究

該方法利用決策樹算法構(gòu)造決策樹,通過對分類結(jié)果中主客觀屬性進(jìn)行標(biāo)記并邏輯運(yùn)算,最終得到較客觀的決策信息,并進(jìn)行實(shí)驗(yàn)驗(yàn)證。
2012-02-07 11:38:0327

基于決策樹學(xué)習(xí)的智能機(jī)器人控制方法

基于決策樹學(xué)習(xí)的智能機(jī)器人控制方法!資料來源網(wǎng)絡(luò),如有侵權(quán),敬請見諒
2015-11-30 11:33:4415

決策樹的介紹

關(guān)于決策樹的介紹,是一些很基礎(chǔ)的介紹,不過是英文介紹。
2016-09-18 14:55:040

決策樹的構(gòu)建設(shè)計(jì)并用Graphviz實(shí)現(xiàn)決策樹的可視化

最近打算系統(tǒng)學(xué)習(xí)下機(jī)器學(xué)習(xí)的基礎(chǔ)算法,避免眼高手低,決定把常用的機(jī)器學(xué)習(xí)基礎(chǔ)算法都實(shí)現(xiàn)一遍以便加深印象。本文為這系列博客的第一篇,關(guān)于決策樹(Decision Tree)的算法實(shí)現(xiàn),文中我將對決策樹
2017-11-15 13:10:0415253

機(jī)器學(xué)習(xí):決策樹--python

,每一次都選擇一個區(qū)分最好的特征進(jìn)行分類,對于可以直接給出標(biāo)簽 label 的數(shù)據(jù),可能最初選擇的幾個特征就能很好地進(jìn)行區(qū)分,有些數(shù)據(jù)可能需要更多的特征,所以決策樹深度也就表示了你需要選擇的幾種特征。 在進(jìn)行特
2017-11-16 01:50:011855

基于Bagging決策樹優(yōu)化算法

針對經(jīng)典C4.5決策樹算法存在過度擬合和伸縮差的問題,提出了一種基于Bagging的決策樹改進(jìn)算法,并基于MapReduce模型對改進(jìn)算法進(jìn)行了并行化。首先,基于Bagging技術(shù)對C4.5算法
2017-11-21 11:57:081

一種新型的決策樹剪枝優(yōu)化算法

目前關(guān)于決策樹剪枝優(yōu)化方面的研究主要集中于預(yù)剪枝和后剪枝算法。然而,這些剪枝算法通常作用于傳統(tǒng)的決策樹分類算法,在代價(jià)敏感學(xué)習(xí)與剪枝優(yōu)化算法相結(jié)合方面還沒有較好的研究成果?;诮?jīng)濟(jì)學(xué)中的效益成本
2017-11-30 10:05:190

基于貪心算法的非一致決策表的決策樹分析方法

決策樹技術(shù)在數(shù)據(jù)挖掘的分類領(lǐng)域中被廣泛采用。采用決策樹從一致決策表f即條件屬性值相同的樣本其決策值相同)中挖掘有價(jià)值信息的相關(guān)研究較為成熟,而對于非一致決策表(即條件屬性值相同的樣本其決策
2017-12-05 14:30:450

機(jī)器學(xué)習(xí)之決策樹生成詳解

根據(jù)給定的數(shù)據(jù)集創(chuàng)建一個決策樹就是機(jī)器學(xué)習(xí)的課程,創(chuàng)建一個決策樹可能會花費(fèi)較多的時間,但是使用一個決策樹卻非常快。創(chuàng)建決策樹時最關(guān)鍵的問題就是選取哪一個特征作為分類特征,好的分類特征能夠最大化的把
2021-08-27 14:38:5419568

基于粗決策樹的動態(tài)規(guī)則提取算法

針對靜態(tài)算法對大數(shù)據(jù)和增量數(shù)據(jù)處理不足的問題,構(gòu)造了基于粗決策樹的動態(tài)規(guī)則提取算法,并將其應(yīng)用于旋轉(zhuǎn)機(jī)械故障診斷中。將粗集與決策樹結(jié)合,用增量方式實(shí)現(xiàn)樣本抽??;經(jīng)過動態(tài)約簡、決策樹構(gòu)造、規(guī)則提取
2017-12-29 14:24:050

帶你了解一下人工智能中的決策樹(DT)

決策樹(DT)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過構(gòu)成決策樹來求取凈現(xiàn)值的期望值大于等于零的概率,評價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫成圖形很像一棵的枝干,故稱決策樹。從數(shù)據(jù)產(chǎn)生決策樹的機(jī)器學(xué)習(xí)技術(shù)叫做決策樹學(xué)習(xí)。
2018-05-29 07:12:002741

用淺顯的語言帶領(lǐng)大家了解可解釋性的概念與方法

廣義上的可解釋性指在我們需要了解或解決一件事情的時候,我們可以獲得我們所需要的足夠的可以理解的信息。
2018-06-25 10:21:117381

構(gòu)建一個決策樹并查看它如何進(jìn)行預(yù)測

正如你所看到的,決策樹非常直觀,他們的決策很容易解釋。 這種模型通常被稱為白盒模型。 相反,正如我們將看到的,隨機(jī)森林或神經(jīng)網(wǎng)絡(luò)通常被認(rèn)為是黑匣子模型。 他們做出了很好的預(yù)測,并且我們可以輕松檢查他們執(zhí)行的計(jì)算以進(jìn)行這些預(yù)測; 然而,通常很難用簡單的術(shù)語來解釋為什么會做出預(yù)測。
2018-07-16 17:12:0114804

數(shù)據(jù)挖掘算法:決策樹算法如何學(xué)習(xí)及分裂剪枝

決策樹(decision tree)算法基于特征屬性進(jìn)行分類,其主要的優(yōu)點(diǎn):模型具有可讀,計(jì)算量小,分類速度快。決策樹算法包括了由Quinlan提出的ID3與C4.5,Breiman等提出的CART。其中,C4.5是基于ID3的,對分裂屬性的目標(biāo)函數(shù)做出了改進(jìn)。
2018-07-21 10:13:296356

機(jī)器學(xué)習(xí)模型的“可解釋性”的概念及其重要意義

如果考察某些類型的“事后可解釋性”(post-hoc interpretable),深度神經(jīng)網(wǎng)絡(luò)具有明顯的優(yōu)勢。深度神經(jīng)網(wǎng)絡(luò)能夠?qū)W習(xí)豐富的表示,這些表示能夠可視化、用語言表達(dá)或用于聚類。如果考慮對可解釋性的需求,似乎線性模型在研究自然世界上的表現(xiàn)更好,但這似乎沒有理論上的原因。
2018-07-24 09:58:2020619

結(jié)合深度神經(jīng)網(wǎng)絡(luò)決策樹的完美方案

“ANT的出發(fā)點(diǎn)與mGBDT類似,都是期望將神經(jīng)網(wǎng)絡(luò)的表示學(xué)習(xí)和決策樹的特點(diǎn)做一個結(jié)合,不過,ANT依舊依賴神經(jīng)網(wǎng)絡(luò)BP算法進(jìn)行的實(shí)現(xiàn),”馮霽說:“而深度森林(gcForest/mGBDT)的目的
2018-07-25 09:39:0110791

斯坦福證明光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),之后可以快捷的完成復(fù)雜任務(wù)

據(jù)報(bào)道,美國斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語音識別、圖像識別等復(fù)雜任務(wù)。
2018-07-30 17:01:003876

深度神經(jīng)決策樹深度神經(jīng)網(wǎng)絡(luò)模型結(jié)合的新模型

近日,來自愛丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)模型的新型模型——深度神經(jīng)決策樹(Deep Neural Decision Trees, DNDT)。
2018-08-19 09:14:4413331

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01937

決策樹的原理和決策樹構(gòu)建的準(zhǔn)備工作,機(jī)器學(xué)習(xí)決策樹的原理

希望通過所給的訓(xùn)練數(shù)據(jù)學(xué)習(xí)一個貸款申請的決策樹,用于對未來的貸款申請進(jìn)行分類,即當(dāng)新的客戶提出貸款申請時,根據(jù)申請人的特征利用決策樹決定是否批準(zhǔn)貸款申請。
2018-10-08 14:26:096850

什么是決策樹?決策樹算法思考總結(jié)

C4.5算法:基于ID3算法的改進(jìn),主要包括:使用信息增益率替換了信息增益下降度作為屬性選擇的標(biāo)準(zhǔn);在決策樹構(gòu)造的同時進(jìn)行剪枝操作;避免了的過度擬合情況;可以對不完整屬性和連續(xù)型數(shù)據(jù)進(jìn)行處理,提升了算法的普適
2019-02-04 09:45:0012271

神經(jīng)網(wǎng)絡(luò)到底有多厲害?斯坦福33頁P(yáng)PT帶你看明白!

新智元今天為大家推薦一份PPT綜述,作者是斯坦福大學(xué)的多位博士后和博士生。這篇綜述由基于神經(jīng)網(wǎng)絡(luò)和圖網(wǎng)絡(luò)的任務(wù)入手,對圖神經(jīng)網(wǎng)絡(luò)的建立、架構(gòu)、訓(xùn)練模式和模型特征等方面做了系統(tǒng)的梳理和介紹,并在最后給出了幾個產(chǎn)業(yè)界和學(xué)術(shù)界的應(yīng)用實(shí)例。
2019-02-18 09:04:107527

決策樹和隨機(jī)森林模型

我們知道決策樹容易過擬合。換句話說,單個決策樹可以很好地找到特定問題的解決方案,但如果應(yīng)用于以前從未見過的問題則非常糟糕。俗話說三個臭皮匠賽過諸葛亮,隨機(jī)森林就利用了多個決策樹,來應(yīng)對多種不同場景。
2019-04-19 14:38:028896

神經(jīng)網(wǎng)絡(luò)可解釋性研究的重要日益凸顯

神經(jīng)網(wǎng)絡(luò)可解釋性,從經(jīng)驗(yàn)主義到數(shù)學(xué)建模
2019-06-27 10:54:205784

深度理解神經(jīng)網(wǎng)絡(luò)黑盒子:可驗(yàn)證可解釋性

雖然神經(jīng)網(wǎng)絡(luò)在近年來 AI 領(lǐng)域取得的成就中發(fā)揮了關(guān)鍵作用,但它們依舊只是有限可解釋性的黑盒函數(shù)近似器。
2019-08-15 09:17:3414165

詳解機(jī)器學(xué)習(xí)決策樹的優(yōu)缺點(diǎn)

決策樹(Decision Tree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過構(gòu)成決策樹來求取凈現(xiàn)值的期望值大于等于零的概率,評價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。
2020-01-19 17:06:008441

Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性

Google Cloud AI戰(zhàn)略總監(jiān)Tracy Frey在 今天的博客中解釋說,Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性。她說,這項(xiàng)新服務(wù)的工作原理是量化每個數(shù)據(jù)因素對模型產(chǎn)生的結(jié)果的貢獻(xiàn),幫助用戶了解其做出決定的原因。
2020-03-24 15:14:213487

深度神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)機(jī)理與決策邏輯難以理解

人工智能系統(tǒng)所面臨的兩大安全問題的根源在于深度神經(jīng)網(wǎng)絡(luò)的不可解釋性。深度神經(jīng)網(wǎng)絡(luò)可解釋性定義為可判讀(interpretability)和可理解(explainability)兩方面的內(nèi)容??膳凶x,即深度神經(jīng)網(wǎng)絡(luò)輸出可判讀
2020-03-27 15:56:183605

詳談機(jī)器學(xué)習(xí)的決策樹模型

決策樹模型是白盒模型的一種,其預(yù)測結(jié)果可以由人來解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性。
2020-07-06 09:49:064273

一文知道決策樹的優(yōu)缺點(diǎn)

決策樹易于理解和解釋,可以可視化分析,容易提取出規(guī)則。
2020-08-27 09:50:0719755

決策樹的構(gòu)成要素及算法

決策樹是一種解決分類問題的算法,決策樹算法采用樹形結(jié)構(gòu),使用層層推理來實(shí)現(xiàn)最終的分類。
2020-08-27 09:52:484757

建立決策樹的邏輯

像上面的這樣的二叉樹狀決策在我們生活中很常見,而這樣的選擇方法就是決策樹。機(jī)器學(xué)習(xí)的方法就是通過平時生活中的點(diǎn)點(diǎn)滴滴經(jīng)驗(yàn)轉(zhuǎn)化而來的。
2020-10-10 10:44:193210

機(jī)器學(xué)習(xí)模型可解釋性的介紹

模型可解釋性方面的研究,在近兩年的科研會議上成為關(guān)注熱點(diǎn),因?yàn)榇蠹也粌H僅滿足于模型的效果,更對模型效果的原因產(chǎn)生更多的思考,這...
2020-12-10 20:19:431321

使用基尼不純度拆分決策樹的步驟

決策樹是機(jī)器學(xué)習(xí)中使用的最流行和功能最強(qiáng)大的分類算法之一。顧名思義,決策樹用于根據(jù)給定的數(shù)據(jù)集做出決策。也就是說,它有助于選擇適當(dāng)?shù)奶卣饕詫?b class="flag-6" style="color: red">樹分成類似于人類思維脈絡(luò)的子部分。
2021-01-13 09:37:411813

決策樹的基本概念/學(xué)習(xí)步驟/算法/優(yōu)缺點(diǎn)

本文將介紹決策樹的基本概念、決策樹學(xué)習(xí)的3個步驟、3種典型的決策樹算法、決策樹的10個優(yōu)缺點(diǎn)。
2021-01-27 10:03:203186

決策樹的判斷標(biāo)準(zhǔn)及算法

決策樹中,可能有多個特征,但是一些特征是無關(guān)重要的,一些則是對分類(target)起到?jīng)Q定作用的。
2021-02-18 10:06:295115

什么是決策樹模型,決策樹模型的繪制方法

決策樹是一種解決分類問題的算法,本文將介紹什么是決策樹模型,常見的用途,以及如何使用“億圖圖示”軟件繪制決策樹模型。
2021-02-18 10:12:2013934

決策樹的結(jié)構(gòu)/優(yōu)缺點(diǎn)/生成

決策樹(DecisionTree)是機(jī)器學(xué)習(xí)中一種常見的算法,它的思想非常樸素,就像我們平時利用選擇做決策的過程。決策樹是一種基本的分類與回歸方法,當(dāng)被用于分類時叫做分類,被用于回歸時叫做回歸。
2021-03-04 10:11:138797

綜述深度神經(jīng)網(wǎng)絡(luò)解釋方法及發(fā)展趨勢

、醫(yī)藥、交通等髙風(fēng)險(xiǎn)決策領(lǐng)域?qū)?b class="flag-6" style="color: red">深度神經(jīng)網(wǎng)絡(luò)可解釋性提岀的強(qiáng)烈要求,對卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絳生成對抗網(wǎng)絡(luò)等典型網(wǎng)絡(luò)解釋方法進(jìn)行分析梳理,總結(jié)并比較現(xiàn)有的解釋方法,同時結(jié)合目前深度神經(jīng)網(wǎng)絡(luò)的發(fā)展趨勢,對其
2021-03-21 09:48:2319

GNN解釋技術(shù)的總結(jié)和分析與圖神經(jīng)網(wǎng)絡(luò)解釋性綜述

神經(jīng)網(wǎng)絡(luò)可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對比了該問題的解決思路。
2021-03-27 11:45:327050

神經(jīng)網(wǎng)絡(luò)解釋性綜述

神經(jīng)網(wǎng)絡(luò)可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對比了該問題的解決思路。作者還為GNN解釋性問題提供了標(biāo)準(zhǔn)的圖
2021-04-09 11:42:063289

基于遺傳優(yōu)化決策樹的建筑能耗預(yù)測模型

基于遺傳優(yōu)化決策樹的建筑能耗預(yù)測模型
2021-06-27 16:19:136

神經(jīng)網(wǎng)絡(luò)復(fù)雜的基本下界

的結(jié)果,但是要理解它是如何做到的是很困難的。如果網(wǎng)絡(luò)出現(xiàn)故障,很難解釋出了什么問題。 雖然理解深層神經(jīng)網(wǎng)絡(luò)的一般行為很有挑戰(zhàn),但事實(shí)證明,探索低維深層神經(jīng)網(wǎng)絡(luò)要容易得多——每層只有幾個神經(jīng)元的網(wǎng)絡(luò)。事實(shí)上
2021-10-13 15:40:441993

《計(jì)算機(jī)研究與發(fā)展》—機(jī)器學(xué)習(xí)的可解釋性

機(jī)器學(xué)習(xí)的可解釋性 來源:《計(jì)算機(jī)研究與發(fā)展》,作者陳珂銳等 摘 要?近年來,機(jī)器學(xué)習(xí)發(fā)展迅速,尤其是深度學(xué)習(xí)在圖像、聲音、自然語言處理等領(lǐng)域取得卓越成效.機(jī)器學(xué)習(xí)算法的表示能力大幅度提高,但是
2022-01-25 08:35:361650

關(guān)于機(jī)器學(xué)習(xí)模型的六大可解釋性技術(shù)

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù)。
2022-02-26 17:20:192875

機(jī)器學(xué)習(xí)模型的可解釋性算法詳解

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對優(yōu)點(diǎn)和缺點(diǎn)。
2022-02-16 16:21:316122

深度神經(jīng)網(wǎng)絡(luò)的基本理論和架構(gòu)

隨著數(shù)學(xué)優(yōu)化和計(jì)算硬件的迅猛發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNN)(名詞解釋>)已然成為解決各領(lǐng)域中許多挑戰(zhàn)性問題的強(qiáng)大工具,包括決策、計(jì)算成像、全息技術(shù)等。
2022-04-11 12:24:504801

使用TensorFlow決策森林創(chuàng)建提升模型

  隨機(jī)森林和梯度提升這類的決策森林模型通常是處理表格數(shù)據(jù)最有效的可用工具。與神經(jīng)網(wǎng)絡(luò)相比,決策森林具有更多優(yōu)勢,如配置過程更輕松、訓(xùn)練速度更快等。使用可大幅減少準(zhǔn)備數(shù)據(jù)集所需的代碼量,因?yàn)檫@些
2022-04-19 10:46:002515

使用RAPIDS加速實(shí)現(xiàn)SHAP的模型可解釋性

  模型解釋性 幫助開發(fā)人員和其他利益相關(guān)者理解模型特征和決策的根本原因,從而使流程更加透明。能夠解釋模型可以幫助數(shù)據(jù)科學(xué)家解釋他們的模型做出決策的原因,為模型增加價(jià)值和信任。在本文中,我們將討論:
2022-04-21 09:25:563490

基于的方法和神經(jīng)網(wǎng)絡(luò)方法

模型和神經(jīng)網(wǎng)絡(luò),像一枚硬幣的兩面。在某些情況下,模型的性能甚至優(yōu)于神經(jīng)網(wǎng)絡(luò)。
2022-07-27 16:17:011643

大數(shù)據(jù)—決策樹

大數(shù)據(jù)————決策樹(decision tree) 決策樹(decision tree):是一種基本的分類與回歸方法,主要討論分類的決策樹。 在分類問題中,表示基于特征對實(shí)例進(jìn)行分類的過程,可以
2022-10-20 10:01:361779

可以提高機(jī)器學(xué)習(xí)模型的可解釋性技術(shù)

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對優(yōu)點(diǎn)和缺點(diǎn)。
2023-02-08 14:08:522163

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:444833

文獻(xiàn)綜述:確保人工智能可解釋性和可信度的來源記錄

本文對數(shù)據(jù)起源、可解釋AI(XAI)和可信賴AI(TAI)進(jìn)行系統(tǒng)的文獻(xiàn)綜述,以解釋基本概念,說明數(shù)據(jù)起源文件可以用來提升基于人工智能系統(tǒng)實(shí)現(xiàn)可解釋性。此外,文中還討論了這個領(lǐng)域近期的發(fā)展模式,并對未來的研究進(jìn)行展望。
2023-04-28 15:55:482562

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:245071

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:365026

決策樹引擎解決方案

電子發(fā)燒友網(wǎng)站提供《決策樹引擎解決方案.pdf》資料免費(fèi)下載
2023-09-13 11:17:520

深度神經(jīng)網(wǎng)絡(luò)模型有哪些

深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經(jīng)網(wǎng)絡(luò),它們在許多領(lǐng)域取得了顯著的成功,如計(jì)算機(jī)視覺、自然語言處理、語音識別等。以下是一些常見的深度神經(jīng)網(wǎng)絡(luò)
2024-07-02 10:00:013226

bp神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)

BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度神經(jīng)網(wǎng)絡(luò)(Deep Neural
2024-07-03 10:14:301801

深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進(jìn)行深入分析。這些維度包括網(wǎng)絡(luò)結(jié)構(gòu)、訓(xùn)練機(jī)制、特征學(xué)習(xí)能力、應(yīng)用領(lǐng)域以及計(jì)算資源需求等方面。以下是對兩者區(qū)別的詳細(xì)闡述。
2024-07-04 13:20:362554

基于FPGA的脈沖神經(jīng)網(wǎng)絡(luò)模型應(yīng)用探索

隨著人工智能技術(shù)的飛速發(fā)展,脈沖神經(jīng)網(wǎng)絡(luò)(Spiking Neural Network, SNN)作為一種模擬生物神經(jīng)系統(tǒng)處理信息的計(jì)算模型,因其獨(dú)特的生物可解釋性和低能耗特性而受到廣泛關(guān)注。然而
2024-07-12 10:08:121605

數(shù)據(jù)智能系列講座第3期—交流式學(xué)習(xí):神經(jīng)網(wǎng)絡(luò)的精細(xì)與或邏輯與人類認(rèn)知的對齊

類認(rèn)知的對齊報(bào)告簡介雖然近年來神經(jīng)網(wǎng)絡(luò)可解釋性研究得到了廣泛的關(guān)注,但是神經(jīng)網(wǎng)絡(luò)中精細(xì)決策邏輯尚未得到有效的解釋,學(xué)界對神經(jīng)網(wǎng)絡(luò)的評測依然停留在檢驗(yàn)神經(jīng)網(wǎng)絡(luò)輸出
2024-09-25 08:06:47648

小白學(xué)解釋性AI:從機(jī)器學(xué)習(xí)到大模型

科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來的是一個關(guān)鍵問題——“黑箱”問題。許多人工智能模型,特別是復(fù)雜的模型,如神經(jīng)網(wǎng)
2025-02-10 12:12:291235

BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
2025-02-12 15:15:211519

斯坦福(Stanford)鎖相放大器故障修復(fù)

斯坦福鎖相放大器是由斯坦福研究系統(tǒng)公司(Stanford Research Systems, SRS)研發(fā)的一款測量工具,主要用于微弱信號的測量和提取。它結(jié)合了高靈敏度、高精度、高穩(wěn)定性和多功能于一體,是科研和工業(yè)領(lǐng)域的重要設(shè)備。
2025-07-30 10:58:51796

已全部加載完成