模型的可解釋性是機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,隨著 AI 應(yīng)用范圍的不斷擴(kuò)大,人們?cè)絹?lái)越不滿(mǎn)足于模型的黑盒特性,與此同時(shí),金融、自動(dòng)駕駛等領(lǐng)域的法律法規(guī)也對(duì)模型的可解釋性提出了更高的要求,在可解釋
2023-09-28 10:17:15
1704 
通過(guò)建立既可解釋又準(zhǔn)確的模型來(lái)改良這種錯(cuò)誤的二分法。關(guān)鍵是將神經(jīng)網(wǎng)絡(luò)與決策樹(shù)相結(jié)合,在使用神經(jīng)網(wǎng)絡(luò)進(jìn)行低級(jí)決策時(shí)保留高級(jí)的可解釋性。
2020-05-31 10:51:44
9211 決策樹(shù)算法是機(jī)器學(xué)習(xí)領(lǐng)域的基石之一,其強(qiáng)大的數(shù)據(jù)分割能力讓它在各種預(yù)測(cè)和分類(lèi)問(wèn)題中扮演著重要的角色。
2023-12-13 09:49:56
2520 
在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過(guò)深度學(xué)習(xí)解決若干問(wèn)題的案例越來(lái)越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32
3474 
決策樹(shù)在機(jī)器學(xué)習(xí)的理論學(xué)習(xí)與實(shí)踐
2019-09-20 12:48:44
在本文中,我們將討論一種監(jiān)督式學(xué)習(xí)算法。最新一代意法半導(dǎo)體 MEMS 傳感器內(nèi)置一個(gè)基于決策樹(shù)分類(lèi)器的機(jī)器學(xué)習(xí)核心(MLC)。這些產(chǎn)品很容易通過(guò)后綴中的 X 來(lái)識(shí)別(例如,LSM6DSOX)。這種
2023-09-08 06:50:22
深度學(xué)習(xí)斯坦福cs231n編程作業(yè)#1 --- k近鄰算法(k-NN)
2020-05-07 12:03:37
導(dǎo)致起火。開(kāi)發(fā)電池的斯坦福教授 在斯坦福開(kāi)發(fā)的新電池中,研究人員采用聚乙烯薄膜材料,薄膜上嵌入了鎳磁粉,它會(huì)形成納米級(jí)的突起。研究人員在突起部分覆蓋石墨烯導(dǎo)電材料,讓電流可以從表面通過(guò)。當(dāng)溫度
2016-01-12 11:57:19
多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
DG645 斯坦福 SRS DG645 延遲發(fā)生器 現(xiàn)金回收 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠或個(gè)人、庫(kù)存閑置
2022-01-11 10:08:52
ML--決策樹(shù)與隨機(jī)森林
2020-07-08 12:31:39
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
本文主要介紹支持向量機(jī)、k近鄰、樸素貝葉斯分類(lèi) 、決策樹(shù)、決策樹(shù)集成等模型的應(yīng)用。講解了支持向量機(jī)SVM線性與非線性模型的適用環(huán)境,并對(duì)核函數(shù)技巧作出深入的分析,對(duì)線性Linear核函數(shù)、多項(xiàng)式
2021-09-01 06:57:36
的深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet在研發(fā)的時(shí)候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造性的把模型拆解在兩張顯卡中,架構(gòu)如下:1.第一層是卷積層,針對(duì)224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47
可以實(shí)現(xiàn)對(duì)未知的數(shù)據(jù)進(jìn)行高效分類(lèi)。從開(kāi)頭狼人殺的例子中也可以看出,決策樹(shù)模型具有較好的可讀性和描述性,能夠幫助我們更高效率地去分析問(wèn)題。舉個(gè)例子,普通人去銀行貸款的時(shí)候,銀行會(huì)根據(jù)相應(yīng)條件,來(lái)判斷貸款人
2018-05-23 09:38:48
之前下載了斯坦福2015年的CNTFET VS model,是.va的文件,不知道怎么用啊,該怎么通過(guò)cadence的pspice進(jìn)行仿真啊,求指點(diǎn)
2018-01-26 13:47:28
統(tǒng)計(jì)學(xué)習(xí)方法決策樹(shù)
2019-11-05 13:40:43
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)
2022-08-02 10:39:39
我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37
求助,哪位大神能找到斯坦福EE214B/314A授課視頻資源?
2021-06-22 07:41:41
回收新舊 斯坦福SRS DG645 延遲發(fā)生器 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠或個(gè)人、庫(kù)存閑置、二手儀器及附件
2021-07-14 10:34:14
利用決策樹(shù)中CART算法識(shí)別印第安人糖尿病患者
2019-05-06 12:16:27
【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測(cè)量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
稱(chēng)為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30
使用 UNICO(v9.10.0.0),生成具有多個(gè)決策樹(shù)的 UCF 文件的過(guò)程似乎是:1.加載所有決策樹(shù)的所有測(cè)試數(shù)據(jù),像對(duì)單個(gè)樹(shù)一樣標(biāo)記每個(gè)數(shù)據(jù)集(大概標(biāo)簽需要在所有樹(shù)中是唯一的)2.使用MLC
2022-12-26 06:30:11
機(jī)器學(xué)習(xí)——決策樹(shù)算法分析
2020-04-02 11:48:38
解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐
2020-06-14 22:21:12
介紹了決策樹(shù)分類(lèi)技術(shù),并用其對(duì)汽車(chē)銷(xiāo)售企業(yè)的調(diào)查問(wèn)卷進(jìn)行數(shù)據(jù)分析,挖掘出最近一年內(nèi)有購(gòu)車(chē)意愿的客戶(hù)的特征,從而提高營(yíng)銷(xiāo)的成功率。證明了決策樹(shù)數(shù)據(jù)挖掘技術(shù)在汽車(chē)
2009-09-09 15:49:08
13 一個(gè)基于粗集的決策樹(shù)規(guī)則提取算法:摘要:決策樹(shù)是數(shù)據(jù)挖掘任務(wù)中分類(lèi)的常用方法。在構(gòu)造決策樹(shù)的過(guò)程中,分離屬性的選擇標(biāo)準(zhǔn)直接影響到分類(lèi)的效果,傳統(tǒng)的決策樹(shù)算法往往
2009-10-10 15:13:34
12 在數(shù)據(jù)挖掘中我們往往會(huì)忽略離群數(shù)據(jù),可是這些數(shù)據(jù)卻往往包含重要的信息。本文采用了將決策樹(shù)與相異度相結(jié)合的方式進(jìn)行離群數(shù)據(jù)的挖掘。通過(guò)計(jì)算決策樹(shù)中各屬性的信息
2010-01-15 14:28:05
5 引入了基于粗糙集理論的屬性約簡(jiǎn)進(jìn)行屬性的降噪和排序處理,然后結(jié)合決策樹(shù)理論的C4.5算法來(lái)對(duì)自診斷電子稱(chēng)重儀表進(jìn)行分析,取信息增益率最大的結(jié)點(diǎn)作為決策樹(shù)的根,以此使分裂
2011-10-08 14:43:10
24 該方法利用決策樹(shù)算法構(gòu)造決策樹(shù),通過(guò)對(duì)分類(lèi)結(jié)果中主客觀屬性進(jìn)行標(biāo)記并邏輯運(yùn)算,最終得到較客觀的決策信息,并進(jìn)行實(shí)驗(yàn)驗(yàn)證。
2012-02-07 11:38:03
27 基于決策樹(shù)學(xué)習(xí)的智能機(jī)器人控制方法!資料來(lái)源網(wǎng)絡(luò),如有侵權(quán),敬請(qǐng)見(jiàn)諒
2015-11-30 11:33:44
15 關(guān)于決策樹(shù)的介紹,是一些很基礎(chǔ)的介紹,不過(guò)是英文介紹。
2016-09-18 14:55:04
0 最近打算系統(tǒng)學(xué)習(xí)下機(jī)器學(xué)習(xí)的基礎(chǔ)算法,避免眼高手低,決定把常用的機(jī)器學(xué)習(xí)基礎(chǔ)算法都實(shí)現(xiàn)一遍以便加深印象。本文為這系列博客的第一篇,關(guān)于決策樹(shù)(Decision Tree)的算法實(shí)現(xiàn),文中我將對(duì)決策樹(shù)
2017-11-15 13:10:04
15253 
,每一次都選擇一個(gè)區(qū)分性最好的特征進(jìn)行分類(lèi),對(duì)于可以直接給出標(biāo)簽 label 的數(shù)據(jù),可能最初選擇的幾個(gè)特征就能很好地進(jìn)行區(qū)分,有些數(shù)據(jù)可能需要更多的特征,所以決策樹(shù)的深度也就表示了你需要選擇的幾種特征。 在進(jìn)行特
2017-11-16 01:50:01
1855 針對(duì)經(jīng)典C4.5決策樹(shù)算法存在過(guò)度擬合和伸縮性差的問(wèn)題,提出了一種基于Bagging的決策樹(shù)改進(jìn)算法,并基于MapReduce模型對(duì)改進(jìn)算法進(jìn)行了并行化。首先,基于Bagging技術(shù)對(duì)C4.5算法
2017-11-21 11:57:08
1 目前關(guān)于決策樹(shù)剪枝優(yōu)化方面的研究主要集中于預(yù)剪枝和后剪枝算法。然而,這些剪枝算法通常作用于傳統(tǒng)的決策樹(shù)分類(lèi)算法,在代價(jià)敏感學(xué)習(xí)與剪枝優(yōu)化算法相結(jié)合方面還沒(méi)有較好的研究成果?;诮?jīng)濟(jì)學(xué)中的效益成本
2017-11-30 10:05:19
0 決策樹(shù)技術(shù)在數(shù)據(jù)挖掘的分類(lèi)領(lǐng)域中被廣泛采用。采用決策樹(shù)從一致決策表f即條件屬性值相同的樣本其決策值相同)中挖掘有價(jià)值信息的相關(guān)研究較為成熟,而對(duì)于非一致決策表(即條件屬性值相同的樣本其決策值
2017-12-05 14:30:45
0 根據(jù)給定的數(shù)據(jù)集創(chuàng)建一個(gè)決策樹(shù)就是機(jī)器學(xué)習(xí)的課程,創(chuàng)建一個(gè)決策樹(shù)可能會(huì)花費(fèi)較多的時(shí)間,但是使用一個(gè)決策樹(shù)卻非???。創(chuàng)建決策樹(shù)時(shí)最關(guān)鍵的問(wèn)題就是選取哪一個(gè)特征作為分類(lèi)特征,好的分類(lèi)特征能夠最大化的把
2021-08-27 14:38:54
19568 
針對(duì)靜態(tài)算法對(duì)大數(shù)據(jù)和增量數(shù)據(jù)處理不足的問(wèn)題,構(gòu)造了基于粗決策樹(shù)的動(dòng)態(tài)規(guī)則提取算法,并將其應(yīng)用于旋轉(zhuǎn)機(jī)械故障診斷中。將粗集與決策樹(shù)結(jié)合,用增量方式實(shí)現(xiàn)樣本抽??;經(jīng)過(guò)動(dòng)態(tài)約簡(jiǎn)、決策樹(shù)構(gòu)造、規(guī)則提取
2017-12-29 14:24:05
0 決策樹(shù)(DT)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫(huà)成圖形很像一棵樹(shù)的枝干,故稱(chēng)決策樹(shù)。從數(shù)據(jù)產(chǎn)生決策樹(shù)的機(jī)器學(xué)習(xí)技術(shù)叫做決策樹(shù)學(xué)習(xí)。
2018-05-29 07:12:00
2741 廣義上的可解釋性指在我們需要了解或解決一件事情的時(shí)候,我們可以獲得我們所需要的足夠的可以理解的信息。
2018-06-25 10:21:11
7381 
正如你所看到的,決策樹(shù)非常直觀,他們的決策很容易解釋。 這種模型通常被稱(chēng)為白盒模型。 相反,正如我們將看到的,隨機(jī)森林或神經(jīng)網(wǎng)絡(luò)通常被認(rèn)為是黑匣子模型。 他們做出了很好的預(yù)測(cè),并且我們可以輕松檢查他們執(zhí)行的計(jì)算以進(jìn)行這些預(yù)測(cè); 然而,通常很難用簡(jiǎn)單的術(shù)語(yǔ)來(lái)解釋為什么會(huì)做出預(yù)測(cè)。
2018-07-16 17:12:01
14804 
決策樹(shù)(decision tree)算法基于特征屬性進(jìn)行分類(lèi),其主要的優(yōu)點(diǎn):模型具有可讀性,計(jì)算量小,分類(lèi)速度快。決策樹(shù)算法包括了由Quinlan提出的ID3與C4.5,Breiman等提出的CART。其中,C4.5是基于ID3的,對(duì)分裂屬性的目標(biāo)函數(shù)做出了改進(jìn)。
2018-07-21 10:13:29
6356 
如果考察某些類(lèi)型的“事后可解釋性”(post-hoc interpretable),深度神經(jīng)網(wǎng)絡(luò)具有明顯的優(yōu)勢(shì)。深度神經(jīng)網(wǎng)絡(luò)能夠?qū)W習(xí)豐富的表示,這些表示能夠可視化、用語(yǔ)言表達(dá)或用于聚類(lèi)。如果考慮對(duì)可解釋性的需求,似乎線性模型在研究自然世界上的表現(xiàn)更好,但這似乎沒(méi)有理論上的原因。
2018-07-24 09:58:20
20619 “ANT的出發(fā)點(diǎn)與mGBDT類(lèi)似,都是期望將神經(jīng)網(wǎng)絡(luò)的表示學(xué)習(xí)和決策樹(shù)的特點(diǎn)做一個(gè)結(jié)合,不過(guò),ANT依舊依賴(lài)神經(jīng)網(wǎng)絡(luò)BP算法進(jìn)行的實(shí)現(xiàn),”馮霽說(shuō):“而深度森林(gcForest/mGBDT)的目的
2018-07-25 09:39:01
10791 
據(jù)報(bào)道,美國(guó)斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)的關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語(yǔ)音識(shí)別、圖像識(shí)別等復(fù)雜任務(wù)。
2018-07-30 17:01:00
3876 近日,來(lái)自愛(ài)丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹(shù)模型的新型模型——深度神經(jīng)決策樹(shù)(Deep Neural Decision Trees, DNDT)。
2018-08-19 09:14:44
13331 由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺(jué)得兩者沒(méi)有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01
937 希望通過(guò)所給的訓(xùn)練數(shù)據(jù)學(xué)習(xí)一個(gè)貸款申請(qǐng)的決策樹(shù),用于對(duì)未來(lái)的貸款申請(qǐng)進(jìn)行分類(lèi),即當(dāng)新的客戶(hù)提出貸款申請(qǐng)時(shí),根據(jù)申請(qǐng)人的特征利用決策樹(shù)決定是否批準(zhǔn)貸款申請(qǐng)。
2018-10-08 14:26:09
6850 C4.5算法:基于ID3算法的改進(jìn),主要包括:使用信息增益率替換了信息增益下降度作為屬性選擇的標(biāo)準(zhǔn);在決策樹(shù)構(gòu)造的同時(shí)進(jìn)行剪枝操作;避免了樹(shù)的過(guò)度擬合情況;可以對(duì)不完整屬性和連續(xù)型數(shù)據(jù)進(jìn)行處理,提升了算法的普適性。
2019-02-04 09:45:00
12271 
新智元今天為大家推薦一份PPT綜述,作者是斯坦福大學(xué)的多位博士后和博士生。這篇綜述由基于神經(jīng)網(wǎng)絡(luò)和圖網(wǎng)絡(luò)的任務(wù)入手,對(duì)圖神經(jīng)網(wǎng)絡(luò)的建立、架構(gòu)、訓(xùn)練模式和模型特征等方面做了系統(tǒng)的梳理和介紹,并在最后給出了幾個(gè)產(chǎn)業(yè)界和學(xué)術(shù)界的應(yīng)用實(shí)例。
2019-02-18 09:04:10
7527 我們知道決策樹(shù)容易過(guò)擬合。換句話說(shuō),單個(gè)決策樹(shù)可以很好地找到特定問(wèn)題的解決方案,但如果應(yīng)用于以前從未見(jiàn)過(guò)的問(wèn)題則非常糟糕。俗話說(shuō)三個(gè)臭皮匠賽過(guò)諸葛亮,隨機(jī)森林就利用了多個(gè)決策樹(shù),來(lái)應(yīng)對(duì)多種不同場(chǎng)景。
2019-04-19 14:38:02
8896 
神經(jīng)網(wǎng)絡(luò)的可解釋性,從經(jīng)驗(yàn)主義到數(shù)學(xué)建模
2019-06-27 10:54:20
5784 雖然神經(jīng)網(wǎng)絡(luò)在近年來(lái) AI 領(lǐng)域取得的成就中發(fā)揮了關(guān)鍵作用,但它們依舊只是有限可解釋性的黑盒函數(shù)近似器。
2019-08-15 09:17:34
14165 決策樹(shù)(Decision Tree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。
2020-01-19 17:06:00
8441 Google Cloud AI戰(zhàn)略總監(jiān)Tracy Frey在 今天的博客中解釋說(shuō),Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性。她說(shuō),這項(xiàng)新服務(wù)的工作原理是量化每個(gè)數(shù)據(jù)因素對(duì)模型產(chǎn)生的結(jié)果的貢獻(xiàn),幫助用戶(hù)了解其做出決定的原因。
2020-03-24 15:14:21
3487 人工智能系統(tǒng)所面臨的兩大安全問(wèn)題的根源在于深度神經(jīng)網(wǎng)絡(luò)的不可解釋性。深度神經(jīng)網(wǎng)絡(luò)可解釋性定義為可判讀(interpretability)和可理解(explainability)兩方面的內(nèi)容。可判讀性,即深度神經(jīng)網(wǎng)絡(luò)輸出可判讀
2020-03-27 15:56:18
3605 決策樹(shù)模型是白盒模型的一種,其預(yù)測(cè)結(jié)果可以由人來(lái)解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱(chēng)為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性。
2020-07-06 09:49:06
4273 
決策樹(shù)易于理解和解釋,可以可視化分析,容易提取出規(guī)則。
2020-08-27 09:50:07
19755 決策樹(shù)是一種解決分類(lèi)問(wèn)題的算法,決策樹(shù)算法采用樹(shù)形結(jié)構(gòu),使用層層推理來(lái)實(shí)現(xiàn)最終的分類(lèi)。
2020-08-27 09:52:48
4757 像上面的這樣的二叉樹(shù)狀決策在我們生活中很常見(jiàn),而這樣的選擇方法就是決策樹(shù)。機(jī)器學(xué)習(xí)的方法就是通過(guò)平時(shí)生活中的點(diǎn)點(diǎn)滴滴經(jīng)驗(yàn)轉(zhuǎn)化而來(lái)的。
2020-10-10 10:44:19
3210 
模型可解釋性方面的研究,在近兩年的科研會(huì)議上成為關(guān)注熱點(diǎn),因?yàn)榇蠹也粌H僅滿(mǎn)足于模型的效果,更對(duì)模型效果的原因產(chǎn)生更多的思考,這...
2020-12-10 20:19:43
1321 決策樹(shù)是機(jī)器學(xué)習(xí)中使用的最流行和功能最強(qiáng)大的分類(lèi)算法之一。顧名思義,決策樹(shù)用于根據(jù)給定的數(shù)據(jù)集做出決策。也就是說(shuō),它有助于選擇適當(dāng)?shù)奶卣饕詫?b class="flag-6" style="color: red">樹(shù)分成類(lèi)似于人類(lèi)思維脈絡(luò)的子部分。
2021-01-13 09:37:41
1813 
本文將介紹決策樹(shù)的基本概念、決策樹(shù)學(xué)習(xí)的3個(gè)步驟、3種典型的決策樹(shù)算法、決策樹(shù)的10個(gè)優(yōu)缺點(diǎn)。
2021-01-27 10:03:20
3186 
在決策樹(shù)中,可能有多個(gè)特征,但是一些特征是無(wú)關(guān)重要的,一些則是對(duì)分類(lèi)(target)起到?jīng)Q定作用的。
2021-02-18 10:06:29
5115 
決策樹(shù)是一種解決分類(lèi)問(wèn)題的算法,本文將介紹什么是決策樹(shù)模型,常見(jiàn)的用途,以及如何使用“億圖圖示”軟件繪制決策樹(shù)模型。
2021-02-18 10:12:20
13934 
決策樹(shù)(DecisionTree)是機(jī)器學(xué)習(xí)中一種常見(jiàn)的算法,它的思想非常樸素,就像我們平時(shí)利用選擇做決策的過(guò)程。決策樹(shù)是一種基本的分類(lèi)與回歸方法,當(dāng)被用于分類(lèi)時(shí)叫做分類(lèi)樹(shù),被用于回歸時(shí)叫做回歸樹(shù)。
2021-03-04 10:11:13
8797 、醫(yī)藥、交通等髙風(fēng)險(xiǎn)決策領(lǐng)域?qū)?b class="flag-6" style="color: red">深度神經(jīng)網(wǎng)絡(luò)可解釋性提岀的強(qiáng)烈要求,對(duì)卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絳生成對(duì)抗網(wǎng)絡(luò)等典型網(wǎng)絡(luò)的解釋方法進(jìn)行分析梳理,總結(jié)并比較現(xiàn)有的解釋方法,同時(shí)結(jié)合目前深度神經(jīng)網(wǎng)絡(luò)的發(fā)展趨勢(shì),對(duì)其
2021-03-21 09:48:23
19 圖神經(jīng)網(wǎng)絡(luò)的可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對(duì)近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對(duì)比了該問(wèn)題的解決思路。
2021-03-27 11:45:32
7050 
圖神經(jīng)網(wǎng)絡(luò)的可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對(duì)近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對(duì)比了該問(wèn)題的解決思路。作者還為GNN解釋性問(wèn)題提供了標(biāo)準(zhǔn)的圖
2021-04-09 11:42:06
3289 
基于遺傳優(yōu)化決策樹(shù)的建筑能耗預(yù)測(cè)模型
2021-06-27 16:19:13
6 的結(jié)果,但是要理解它是如何做到的是很困難的。如果網(wǎng)絡(luò)出現(xiàn)故障,很難解釋出了什么問(wèn)題。 雖然理解深層神經(jīng)網(wǎng)絡(luò)的一般行為很有挑戰(zhàn)性,但事實(shí)證明,探索低維深層神經(jīng)網(wǎng)絡(luò)要容易得多——每層只有幾個(gè)神經(jīng)元的網(wǎng)絡(luò)。事實(shí)上
2021-10-13 15:40:44
1993 
機(jī)器學(xué)習(xí)的可解釋性 來(lái)源:《計(jì)算機(jī)研究與發(fā)展》,作者陳珂銳等 摘 要?近年來(lái),機(jī)器學(xué)習(xí)發(fā)展迅速,尤其是深度學(xué)習(xí)在圖像、聲音、自然語(yǔ)言處理等領(lǐng)域取得卓越成效.機(jī)器學(xué)習(xí)算法的表示能力大幅度提高,但是
2022-01-25 08:35:36
1650 
本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù)。
2022-02-26 17:20:19
2875 
本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對(duì)優(yōu)點(diǎn)和缺點(diǎn)。
2022-02-16 16:21:31
6122 
隨著數(shù)學(xué)優(yōu)化和計(jì)算硬件的迅猛發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNN)(名詞解釋>)已然成為解決各領(lǐng)域中許多挑戰(zhàn)性問(wèn)題的強(qiáng)大工具,包括決策、計(jì)算成像、全息技術(shù)等。
2022-04-11 12:24:50
4801 隨機(jī)森林和梯度提升樹(shù)這類(lèi)的決策森林模型通常是處理表格數(shù)據(jù)最有效的可用工具。與神經(jīng)網(wǎng)絡(luò)相比,決策森林具有更多優(yōu)勢(shì),如配置過(guò)程更輕松、訓(xùn)練速度更快等。使用樹(shù)可大幅減少準(zhǔn)備數(shù)據(jù)集所需的代碼量,因?yàn)檫@些
2022-04-19 10:46:00
2515 模型解釋性 幫助開(kāi)發(fā)人員和其他利益相關(guān)者理解模型特征和決策的根本原因,從而使流程更加透明。能夠解釋模型可以幫助數(shù)據(jù)科學(xué)家解釋他們的模型做出決策的原因,為模型增加價(jià)值和信任。在本文中,我們將討論:
2022-04-21 09:25:56
3490 樹(shù)模型和神經(jīng)網(wǎng)絡(luò),像一枚硬幣的兩面。在某些情況下,樹(shù)模型的性能甚至優(yōu)于神經(jīng)網(wǎng)絡(luò)。
2022-07-27 16:17:01
1643 大數(shù)據(jù)————決策樹(shù)(decision tree) 決策樹(shù)(decision tree):是一種基本的分類(lèi)與回歸方法,主要討論分類(lèi)的決策樹(shù)。 在分類(lèi)問(wèn)題中,表示基于特征對(duì)實(shí)例進(jìn)行分類(lèi)的過(guò)程,可以
2022-10-20 10:01:36
1779 本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對(duì)優(yōu)點(diǎn)和缺點(diǎn)。
2023-02-08 14:08:52
2163 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:44
4833 本文對(duì)數(shù)據(jù)起源、可解釋AI(XAI)和可信賴(lài)AI(TAI)進(jìn)行系統(tǒng)的文獻(xiàn)綜述,以解釋基本概念,說(shuō)明數(shù)據(jù)起源文件可以用來(lái)提升基于人工智能系統(tǒng)實(shí)現(xiàn)可解釋性。此外,文中還討論了這個(gè)領(lǐng)域近期的發(fā)展模式,并對(duì)未來(lái)的研究進(jìn)行展望。
2023-04-28 15:55:48
2562 
卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:24
5071 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi)。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
5026 電子發(fā)燒友網(wǎng)站提供《決策樹(shù)引擎解決方案.pdf》資料免費(fèi)下載
2023-09-13 11:17:52
0 深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNNs)是一類(lèi)具有多個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),它們?cè)谠S多領(lǐng)域取得了顯著的成功,如計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。以下是一些常見(jiàn)的深度神經(jīng)網(wǎng)絡(luò)
2024-07-02 10:00:01
3226 BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見(jiàn)的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來(lái)訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度神經(jīng)網(wǎng)絡(luò)(Deep Neural
2024-07-03 10:14:30
1801 在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指?jìng)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括網(wǎng)絡(luò)結(jié)構(gòu)、訓(xùn)練機(jī)制、特征學(xué)習(xí)能力、應(yīng)用領(lǐng)域以及計(jì)算資源需求等方面。以下是對(duì)兩者區(qū)別的詳細(xì)闡述。
2024-07-04 13:20:36
2554 隨著人工智能技術(shù)的飛速發(fā)展,脈沖神經(jīng)網(wǎng)絡(luò)(Spiking Neural Network, SNN)作為一種模擬生物神經(jīng)系統(tǒng)處理信息的計(jì)算模型,因其獨(dú)特的生物可解釋性和低能耗特性而受到廣泛關(guān)注。然而
2024-07-12 10:08:12
1605 類(lèi)認(rèn)知的對(duì)齊報(bào)告簡(jiǎn)介雖然近年來(lái)神經(jīng)網(wǎng)絡(luò)的可解釋性研究得到了廣泛的關(guān)注,但是神經(jīng)網(wǎng)絡(luò)中精細(xì)決策邏輯尚未得到有效的解釋,學(xué)界對(duì)神經(jīng)網(wǎng)絡(luò)的評(píng)測(cè)依然停留在檢驗(yàn)神經(jīng)網(wǎng)絡(luò)輸出
2024-09-25 08:06:47
648 
科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來(lái)了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來(lái)的是一個(gè)關(guān)鍵問(wèn)題——“黑箱”問(wèn)題。許多人工智能模型,特別是復(fù)雜的模型,如神經(jīng)網(wǎng)
2025-02-10 12:12:29
1235 
BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
2025-02-12 15:15:21
1519 斯坦福鎖相放大器是由斯坦福研究系統(tǒng)公司(Stanford Research Systems, SRS)研發(fā)的一款測(cè)量工具,主要用于微弱信號(hào)的測(cè)量和提取。它結(jié)合了高靈敏度、高精度、高穩(wěn)定性和多功能性于一體,是科研和工業(yè)領(lǐng)域的重要設(shè)備。
2025-07-30 10:58:51
796 
評(píng)論