智能控制--第7章 典型神經(jīng)網(wǎng)絡(luò).ppt
2017-09-24 11:16:11
智能控制--第9章 神經(jīng)網(wǎng)絡(luò)控制.ppt
2017-09-24 11:19:25
。鑒于此種情況,本文采用了神經(jīng)模糊控制方法,對SAW壓力傳感器進行智能溫度補償。 神經(jīng)模糊控制是一種用神經(jīng)網(wǎng)絡(luò)實現(xiàn)的模糊控制的方法。在形式結(jié)構(gòu)上是用多點網(wǎng)絡(luò)實現(xiàn)的模糊映射。而神經(jīng)網(wǎng)絡(luò)的非線性和可訓(xùn)練性
2018-10-24 11:36:52
0 引言
在高性能的異步電動機矢量控制中,轉(zhuǎn)速的閉環(huán)控制環(huán)節(jié)一般是必不可少的。采用傳統(tǒng)的速度傳感器檢測轉(zhuǎn)速,由于速度傳感器在安裝、維護、環(huán)境影響等方面會嚴重影響異步電動機調(diào)速系統(tǒng)的簡便性、廉價性
2025-06-16 21:54:16
大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進步
2017-10-13 11:41:43
FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實現(xiàn)方法是什么?
2021-09-28 06:37:44
Matlab神經(jīng)網(wǎng)絡(luò)工具箱是什么?Matlab神經(jīng)網(wǎng)絡(luò)工具箱在同步中的應(yīng)用有哪些?
2021-04-26 06:42:29
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
是一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每一時刻只有一個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負責接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
人工神經(jīng)網(wǎng)絡(luò)在傳感器數(shù)據(jù)融合中的應(yīng)用針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
神經(jīng)網(wǎng)絡(luò)研究的第一次浪潮。1969 年美國數(shù)學(xué)家及人工智能先驅(qū) Minsky在其著作中證 明感知器本質(zhì)上是一種線性模型[21],只能處理線性分 類問題,最簡單的異或問題都無法正確分類,因此神 經(jīng)網(wǎng)絡(luò)的研究也
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實現(xiàn)或非常難以實現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:38:52
數(shù)據(jù)融合方式消除溫度誤差。構(gòu)建了多傳感器融合模型,選用徑向基函數(shù)(Radial Basis Function,RBF)網(wǎng)絡(luò)對磁敏傳感器和溫度傳感器的輸出進行融合,并通過實驗驗證了該方法的有效性。檢測系統(tǒng)的準確度和穩(wěn)定性有了明顯的提高。
2020-03-06 08:16:48
最近在學(xué)習(xí)電機的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13
隱含層結(jié)點使用了非線性傳輸函數(shù),比單層感知器網(wǎng)絡(luò)具有更強的分類能力。在隱含層中心確定的情況下,RBF神經(jīng)網(wǎng)絡(luò)只需對隱含層至輸出層的單層權(quán)值學(xué)習(xí)修正,比多層感知器具有更快的收斂速度,這也是本文選擇RBF
2009-10-23 10:03:57
巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號處理器DSP
2019-08-08 06:11:30
概述:ZISC78是由IBM和Sillicon聯(lián)合研發(fā)的一種具有自學(xué)習(xí)功能的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)芯片,它內(nèi)含78個神經(jīng)元;并且采用并行結(jié)構(gòu),運行速度與神經(jīng)元數(shù)量無關(guān);支持RBF/KNN算法;內(nèi)部可分為若干獨立子網(wǎng)...
2021-04-07 06:48:33
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
一定的早熟收斂問題,引入一種自適應(yīng)動態(tài)改變慣性因子的PSO算法,使算法具有較強的全局搜索能力.將此算法訓(xùn)練的模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于語音識別中,結(jié)果表明,與BP算法相比,粒子群優(yōu)化的模糊神經(jīng)網(wǎng)絡(luò)具有較高
2010-05-06 09:05:35
脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實現(xiàn),實現(xiàn)數(shù)據(jù)分類功能,有報酬。QQ470345140.
2013-08-25 09:57:14
將模糊徑向基函數(shù)(f-RBF)神經(jīng)網(wǎng)絡(luò)算法用于永磁同步電機(PMSM)的速度控制。針對電機的動態(tài)和非線性特點,結(jié)合PMSM驅(qū)動的矢量控制方法, 設(shè)計了f-RBF在線辨識器和速度控制器。在Matl
2009-06-01 16:09:19
22 水位控制是工業(yè)鍋爐控制系統(tǒng)中一個重要的環(huán)節(jié),其控制質(zhì)量的優(yōu)劣直接影響到鍋爐的安全和經(jīng)濟效益。本文將一種基于模糊RBF 神經(jīng)網(wǎng)絡(luò)的PID 控制器應(yīng)用與工業(yè)鍋爐水位的控制
2009-06-09 09:13:03
19 應(yīng)用仿人智能魯棒性高、能對付難控對象的控制特點,結(jié)合模糊RBF 神經(jīng)網(wǎng)絡(luò)控制技術(shù),提出仿人模糊神經(jīng)網(wǎng)絡(luò)控制方法,對PID 控制器參數(shù)進行優(yōu)化調(diào)節(jié)。該方法采用仿人智能的
2009-06-09 10:47:36
17 介紹一種基于RBF 的模糊神經(jīng)網(wǎng)絡(luò)設(shè)計與仿真分析的實現(xiàn)方法。該方法利用MATLAB 中的神經(jīng)網(wǎng)絡(luò)工具箱圖形用戶界面GUI 結(jié)合模糊控制規(guī)則表給定的輸入/輸出樣本數(shù)據(jù)設(shè)計、構(gòu)建RBF 模糊
2009-06-10 14:22:49
28 為使較低精度傳感器獲得較高精度,以提高傳感器的性能價格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個可以濾去傳感器信號噪聲的非線性濾
2009-06-16 16:15:02
12 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:03
27 針對目前火災(zāi)探測技術(shù)難以滿足實際需要的問題,在分析RBF 網(wǎng)絡(luò)結(jié)構(gòu)特點及最近鄰聚類學(xué)習(xí)算法的基礎(chǔ)上,提出用RBF 神經(jīng)網(wǎng)絡(luò)建立火災(zāi)探測器模型,以火災(zāi)初期實驗得到的環(huán)境溫度
2009-06-23 13:15:41
24 提出了一種在經(jīng)過4 級小波變換的原始圖像中嵌入水印的算法。根據(jù)人類視覺特征來決定嵌入水印的強度,用秘鑰來決定水印嵌入的位置,通過使用訓(xùn)練的RBF 神經(jīng)網(wǎng)絡(luò)來嵌入和提取
2009-06-25 14:07:51
15 該文介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)進行氣體傳感器故障檢測的新方法,文中利用單個氣體傳感器的輸出信息為氣體傳感器建立了動態(tài)非線性神經(jīng)網(wǎng)絡(luò)氣體傳感器輸出模型,并利用該
2009-06-26 11:37:26
13 針對壓力傳感器在實際應(yīng)用中受多個非目標參量的影響而導(dǎo)致其輸出數(shù)據(jù)不僅僅與目標參量有關(guān),提出了應(yīng)用神經(jīng)網(wǎng)絡(luò)技術(shù)對多傳感器數(shù)據(jù)進行融合以消除非目標參量對傳感器輸出的
2009-06-27 09:01:28
14 介紹了用神經(jīng)網(wǎng)絡(luò)校正傳感器系統(tǒng)非線性誤差的原理和方法,提出了基于BP 神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正及其模型、算法與實現(xiàn)技術(shù)。通過計算機仿真與應(yīng)用,顯示出這種逆模型不但
2009-06-29 10:22:06
12 多傳感器信息集成與融合在處理信息中呈現(xiàn)出較好的實用性和優(yōu)越性。介紹了有關(guān)多傳感器信息集成與融合方面的基本知識,分析了傳統(tǒng)的信息融合與運用神經(jīng)網(wǎng)絡(luò)實現(xiàn)多傳感器信
2009-06-30 16:59:27
21 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:53
18 為使較低精度傳感器獲得較高精度,以提高傳感器的性能價格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個可以濾去傳感器信號噪聲的非線性濾
2009-07-07 09:01:48
26 大型熱力控制系統(tǒng)必須能夠檢測傳感器故障,并采取相應(yīng)的措施,保證控制過程的順利進行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)的故障檢測新方法,為系統(tǒng)中每一個傳感器構(gòu)造一個神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:07
6 提出一種新的基于隨機模糊神經(jīng)網(wǎng)絡(luò)的多傳感器狀態(tài)信息融合方法, 研究和比較了基于單值模糊神經(jīng)網(wǎng)絡(luò)和基于隨機模糊神經(jīng)網(wǎng)絡(luò)的雷達與紅外傳感器狀態(tài)信息融合。仿真結(jié)果表明,
2009-07-09 14:42:16
10 通過分析無刷直流電機間接位置檢測原理, 提出了基于徑向基函數(shù)(RBF) 神經(jīng)網(wǎng)絡(luò)的無位置傳感器控制方法。該方法建立動態(tài)的RBF 網(wǎng)絡(luò)模型, 采用k2均值聚類法和遞推最小二乘法(RL
2009-07-13 09:45:15
30 針對分布式傳感器中的故障點多、導(dǎo)致估計系統(tǒng)可靠性參數(shù)困難的特點, 提出了一種基于BP 三層神經(jīng)網(wǎng)絡(luò)的M arkov 可靠性模型。仿真結(jié)果表明, 神經(jīng)網(wǎng)絡(luò)收斂時的可用度與M arkov 模型計
2009-07-13 11:21:21
18 本文基于神經(jīng)網(wǎng)絡(luò)可以對非線性系統(tǒng)的任意逼近能力, 建立了六維腕力傳感器的補償模糊神經(jīng)網(wǎng)絡(luò)模型, 仿真結(jié)果表明, 這種補償模糊神經(jīng)網(wǎng)絡(luò)對六維腕力傳感器非線性系統(tǒng)逼近精度
2009-07-14 09:22:20
15 針對傳感器故障, 提出了一種基于RBF 神經(jīng)網(wǎng)絡(luò)的集成故障診斷方法。用RBF 神經(jīng)網(wǎng)絡(luò)建立傳感器故障模型, 對系統(tǒng)的狀態(tài)和故障參數(shù)進行在線估計, 然后將故障參數(shù)與修正的Bayes分類算
2009-07-14 11:58:19
13 針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞: 人工神
2009-07-16 09:30:25
18 提出了基于人工神經(jīng)網(wǎng)絡(luò)進行多維力傳感器靜態(tài)解耦的方法。
2009-07-18 10:06:00
10 由于糧庫溫度是非線性的時間序列,文章提出了基于RBF神經(jīng)網(wǎng)絡(luò)的糧庫溫度預(yù)測模型。該模型優(yōu)于傳統(tǒng)的糧庫溫度分析方法,又避免了BP算法容易陷入局部極小點和收斂速度慢的
2009-08-04 07:58:30
9 本文介紹了基于matlab 的徑向基函數(shù)RBF 神經(jīng)網(wǎng)絡(luò)對于圖書館借書量預(yù)測的方法,討論了RBF 神經(jīng)網(wǎng)絡(luò)的構(gòu)造思路、參數(shù)和分布密度spread 的選擇。為圖書館工作人員書籍管理提供了新
2009-08-05 08:19:04
19 通過在我廠蒸餾裝置上軟儀表的具體使用情況,簡單介紹了基于RBF 神經(jīng)網(wǎng)絡(luò)的軟儀表的開發(fā),RBF 神經(jīng)網(wǎng)絡(luò)的特點、在建模中的應(yīng)用及RBF 神經(jīng)網(wǎng)絡(luò)改進后的模型應(yīng)用。開發(fā)軟儀表的
2009-08-14 15:15:07
6 RBF 徑向基神經(jīng)網(wǎng)絡(luò)在工程中,尤其是各種智能控制中的應(yīng)用十分廣泛。其隱含層的非線性激活函數(shù)經(jīng)常采用高斯徑向基函數(shù),這一函數(shù)為一指數(shù)函數(shù)。指數(shù)函數(shù)用硬件實現(xiàn)起來比
2009-09-02 18:06:46
24 針對熱電偶的測量精度問題,建立了熱電偶傳感器的數(shù)學(xué)模型。此數(shù)學(xué)模型采用RBF 神經(jīng)網(wǎng)絡(luò),利用帶遺忘因子的梯度下降算法進行網(wǎng)絡(luò)參數(shù)的調(diào)整,并給出了建模步驟。實際
2009-09-18 11:03:31
11 引用無人直升機姿態(tài)控制模塊的簡化模型,獲得其姿態(tài)控制的原理圖。采用日益完善的神經(jīng)網(wǎng)絡(luò)理論,確定RBF 神經(jīng)網(wǎng)絡(luò),再對其進行訓(xùn)練,得到精確的神經(jīng)網(wǎng)絡(luò)模型。研究探
2009-12-08 11:43:30
11 將模糊徑向基函數(shù)(f-RBF)神經(jīng)網(wǎng)絡(luò)算法用于永磁同步電機(PMSM)的速度控制。針對電機的動態(tài)和非線性特點,結(jié)合PMSM驅(qū)動的矢量控制方法, 設(shè)計了f-RBF在線辨識器和速度控制器。在Matl
2009-12-14 16:52:51
16 應(yīng)用仿人智能魯棒性高、能對付難控對象的控制特點,結(jié)合模糊RBF 神經(jīng)網(wǎng)絡(luò)控制技術(shù),提出仿人模糊神經(jīng)網(wǎng)絡(luò)控制方法,對PID 控制器參數(shù)進行優(yōu)化調(diào)節(jié)。該方法采用仿人智能的
2009-12-19 11:50:03
12 研究了基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù),并將其應(yīng)用于自主吸塵機器人中。給出了神經(jīng)網(wǎng)絡(luò)傳感器融合技術(shù)的基本原理,探索了改進的BP 信息融合算法,使得改進后的算法在收斂
2009-12-31 12:00:14
11 為有效解決系統(tǒng)的最經(jīng)濟控制問題,本文提出將系統(tǒng)的經(jīng)濟收益問題轉(zhuǎn)換為對系統(tǒng)控制結(jié)構(gòu)和參數(shù)的優(yōu)化問題。首先提出將網(wǎng)絡(luò)代價的概念植入徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RBF網(wǎng)絡(luò))結(jié)構(gòu)的優(yōu)
2010-02-23 14:11:33
11 模糊神經(jīng)網(wǎng)絡(luò)在GPS高程轉(zhuǎn)換中的應(yīng)用
摘要: 介紹了模糊神經(jīng)網(wǎng)絡(luò)基本原理和GPS 高程轉(zhuǎn)換方法, 采用模糊神經(jīng)網(wǎng)絡(luò)算法, 實現(xiàn)了GPS 高程轉(zhuǎn)換. 在用模糊神經(jīng)網(wǎng)絡(luò)進
2010-04-26 11:27:28
12 為了提高模擬移動床控制系統(tǒng)PH傳感器的可靠性,提出了一種基于兩級RBF神經(jīng)網(wǎng)絡(luò)的故障診斷方法。該方法首先利用徑向基(RBF)神經(jīng)網(wǎng)絡(luò)對傳感器的輸出序列建立預(yù)測模型,通過計算
2010-08-28 17:59:55
9 在應(yīng)用徑向基函數(shù)RBF(Radial Basis Function)神經(jīng)網(wǎng)絡(luò)對機器人進行軌跡規(guī)劃時,為解決一般學(xué)習(xí)算法中收斂速度慢、學(xué)習(xí)精度不高的問題,提出一種混合學(xué)習(xí)算法。該方法根據(jù)軌跡規(guī)劃
2010-12-31 17:17:51
18 隨著智慧城市建設(shè)的加速推進,海量物聯(lián)網(wǎng)終端(如智慧燈桿、環(huán)境監(jiān)測傳感器、智能井蓋等)的部署對通信網(wǎng)絡(luò)提出了更高要求。傳統(tǒng)銅纜網(wǎng)絡(luò)在帶寬、距離和抗干擾能力上的局限性日益凸顯,而光纖通信憑借高帶寬、低
2025-04-12 20:07:49
RBF神經(jīng)網(wǎng)絡(luò)電力電
2011-01-06 17:44:04
56 模擬電路的固有特點使其故障診斷較數(shù)字電路困難。相對于BP網(wǎng)絡(luò),RBF神經(jīng)網(wǎng)絡(luò)具有最佳逼近性能且收斂快、無局部極小,可引入解決上述困難。根據(jù)具體電路,定義故障,選定測試點
2011-05-05 17:57:24
35 提出了一種基于徑向基函數(shù)(RBF) 免疫神經(jīng)網(wǎng)絡(luò) 的故障檢測方法,該故障檢測方法由系統(tǒng)辨識、殘差過濾和故障報警濃度等功能模塊構(gòu)成。系統(tǒng)辨識基于免疫RBF神經(jīng)網(wǎng)絡(luò),用于故障檢測的殘
2011-07-27 16:51:21
22 基于RBF神經(jīng)網(wǎng)絡(luò)整定PID的風(fēng)力發(fā)電變槳距控制
2011-10-14 15:42:39
25 為使設(shè)計人員在大型客機設(shè)計階段便可對其制造成本有較為準確的把握,針對大型客機制造成本,采用RBF神經(jīng)網(wǎng)絡(luò)理論建立了一種分析模型,并給出建模流程。利用Matlab神經(jīng)網(wǎng)絡(luò)工具箱
2013-01-29 14:04:24
16 基于神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機無位置傳感器控制-夏長亮
2017-01-21 11:54:39
5 基于改進RBF神經(jīng)網(wǎng)絡(luò)的鋼構(gòu)件質(zhì)量預(yù)測研究_雷兆明
2017-02-07 15:05:00
0 基于RBF神經(jīng)網(wǎng)絡(luò)的柴油機排氣溫度智能檢測方法的研究_張丹
2017-02-07 15:05:00
0 多策略改進RBF神經(jīng)網(wǎng)絡(luò)入侵檢測方法研究_邵洪濤
2017-03-19 11:29:00
0 RBF神經(jīng)網(wǎng)絡(luò)熱式氣體流量計溫度補償_王川
2017-03-19 18:58:37
0 RBF 神經(jīng)網(wǎng)絡(luò) 徑向基麗數(shù)(Radial Basis Function,RBF )神經(jīng)網(wǎng)絡(luò)是由J.Moody 和C.Darken 在20世紀80 年代末提出的一種神經(jīng)網(wǎng)絡(luò),它是具有單隱層的三層前饋
2017-10-15 10:11:33
19 饋型神經(jīng)網(wǎng)絡(luò)中的一種新網(wǎng)絡(luò),具有結(jié)構(gòu)簡單、訓(xùn)練速度快、函數(shù)逼近能力和分類能力強等特點,由該網(wǎng)絡(luò)構(gòu)成的系統(tǒng)是有界的、穩(wěn)定的。,RBF 神經(jīng)網(wǎng)絡(luò)的上述特點使得它在各個領(lǐng)域中都得到了廣泛的應(yīng)用。尤其在解決分類問題中,它的優(yōu)勢
2017-10-30 18:34:32
12 合適的RBF網(wǎng)絡(luò)結(jié)構(gòu)才能使得混凝土強度預(yù)測更加適合實際工程應(yīng)用。 為綜合考慮影響因索之間的非線性關(guān)系,常用的RBF神經(jīng)網(wǎng)絡(luò)的隱含層的確定多采用:K-均值聚類算法、梯度下降發(fā)和OLS法。但是在實際工程作業(yè)中,迭代次數(shù)、訓(xùn)練
2017-11-09 14:34:20
14 算法預(yù)測性能更優(yōu),使用梯度下降算法與遺傳算法混合對RBF神經(jīng)網(wǎng)絡(luò)進行參數(shù)優(yōu)化,提高預(yù)測模型收斂效率。實例分析表明,使用本文研究的混合RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型的預(yù)測結(jié)果明顯優(yōu)于其他傳統(tǒng)的預(yù)測模型。同時,在預(yù)測速度上也具有較大的
2017-11-22 15:54:54
7 為了提高徑向基函數(shù)RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型對短時交通流的預(yù)測準確性,提出了一種基于改進人工蜂群算法優(yōu)化RBF神經(jīng)網(wǎng)絡(luò)的短時交通流預(yù)測模型。利用改進人工蜂群算法確定RBF網(wǎng)絡(luò)隱含層的中心值以及隱含層單元
2017-12-01 16:31:58
2 基于RBF神經(jīng)網(wǎng)絡(luò)的辨識,徑向基函數(shù)(RBF-Radial Basis Function)神經(jīng)網(wǎng)絡(luò)是由J.Moody和C.Darken在80年代末提出的一種神經(jīng)網(wǎng)絡(luò)它是具有單隱層的三層前饋網(wǎng)絡(luò)。由于
2017-12-06 15:10:30
0 本視頻主要詳細介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:22
14844 針對熱敏電阻溫度傳感器應(yīng)用中存在的非線性問題,提出了應(yīng)用小波神經(jīng)網(wǎng)絡(luò)實現(xiàn)其非線性補償?shù)姆椒?,介紹了非線性補償?shù)脑恚暾耐茖?dǎo)了小波神經(jīng)網(wǎng)絡(luò)訓(xùn)練過程。實驗結(jié)果表明,該方法補償精度高,優(yōu)于BP神經(jīng)網(wǎng)絡(luò)。
2020-03-27 17:18:40
4 海底油氣輸送管道漏磁檢測裝置工作于高溫高壓環(huán)境下,其中的InSb霍爾傳感器對溫度敏感,需要補償溫度誤差。該文構(gòu)建了多傳感器融合模型,將多個霍爾傳感器和溫度傳感器的輸出用徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)
2020-03-27 17:18:35
6 針對壓力傳感器在應(yīng)用中出現(xiàn)溫度誤差大這一缺點,提出了通過采用徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)較強的非線性逼近能力,實現(xiàn)其非線性校正和溫度補償?shù)?b class="flag-6" style="color: red">網(wǎng)絡(luò)方法,并對該法進行改進。通過仿真可看出,改進方法校正
2021-03-17 10:21:00
11 RBF神經(jīng)網(wǎng)絡(luò)有很強的非線性擬合能力,可映射任意復(fù)雜的非線性關(guān)系,而且學(xué)習(xí)規(guī)則簡單,便于計算機實現(xiàn)。具有很強的魯棒性、記憶能力、非線性映射能力以及強大的自學(xué)習(xí)能力, 因此有很大的應(yīng)用市場。
2021-03-24 15:59:12
5 神經(jīng)網(wǎng)絡(luò)在控制中的應(yīng)用總結(jié)說明。
2021-04-21 09:51:05
7 神經(jīng)網(wǎng)絡(luò)及其在GIS中的應(yīng)用說明。
2021-04-27 09:36:16
11 基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實現(xiàn)說明。
2021-04-28 11:24:23
27 自構(gòu)造RBF神經(jīng)網(wǎng)絡(luò)及其參數(shù)優(yōu)化說明。
2021-05-31 15:25:01
9 在LTE-R越區(qū)切換中,基于A3事件的越區(qū)切換算法在列車高速運行時容易出現(xiàn)乒乓效應(yīng)和無線鏈路連接失敗的問題。為此,提出基于RBF神經(jīng)網(wǎng)絡(luò)的越區(qū)切換優(yōu)化算法。采集列車運行在特定環(huán)境中不同速度時切換效果
2021-06-02 15:14:35
2 神經(jīng)網(wǎng)絡(luò)及BP與RBF的比較說明。
2021-06-18 09:59:11
22 RBF神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò)的區(qū)別就在于訓(xùn)練方法上面:RBF的隱含層與輸入層之間的連接權(quán)值不是隨機確定的,是有一種固定算式的。
2023-07-19 17:34:26
2366 
我們使用其他神經(jīng)網(wǎng)絡(luò)架構(gòu)擴展了工作流。
將工作流程移交給成功執(zhí)行的其他項目
系列同事正在驗證虛擬傳感器的當前結(jié)果,以供串聯(lián)使用。
2023-08-15 10:37:02
603 
電子發(fā)燒友網(wǎng)站提供《基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)的硬件實現(xiàn).pdf》資料免費下載
2023-10-23 10:21:25
0 隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強大的特征提取和分類能力,為圖像識別帶來了革命性的進步。本文將詳細介紹神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用案例,包括卷積神經(jīng)網(wǎng)絡(luò)(CNN)在面部識別、自動駕駛、醫(yī)療診斷等領(lǐng)域的應(yīng)用,以及BP神經(jīng)網(wǎng)絡(luò)在手寫數(shù)字識別中的實踐。
2024-07-01 14:19:54
1625
評論