用粗淺的話來闡述摩爾定律就是說IC上可容納的晶體管數目,約每隔18個月便會增加一倍,性能也將提升一倍,該定律是由英特爾(Intel)名譽董事長戈登·摩爾(Gordon Moore)經過長期觀察發(fā)現得之。
該定律闡述了戈登·摩爾整理資料時發(fā)現的一個驚人趨勢,每個新芯片大體上包含其前任兩倍的容量,每個芯片的產生都是在前一個芯片產生后的18-24個月內。如果這個趨勢繼續(xù)的話,計算能力相對于時間周期將呈指數式的上升。Moore的觀察資料,就是現在所謂的Moore定律,所闡述的趨勢一直延續(xù)至今,且仍不同尋常地準確。人們還發(fā)現這不光適用于對存儲器芯片的描述,也精確地說明了處理機能力和磁盤驅動器存儲容量的發(fā)展。該定律成為許多工業(yè)對于性能預測的基礎。在26年的時間里,芯片上的晶體管數量增加了3200多倍,從1971年推出的第一款4004的2300個增加到奔騰II處理器的750萬個。
摩爾定律出現的原因
由于高純硅的獨特性,集成度越高,晶體管的價格越便宜,這樣也就引出了摩爾定律的經濟學效益,在20世紀60年代初,一個晶體管要10美元左右,但隨著晶體管越來越小,直小到一根頭發(fā)絲上可以放1000個晶體管時,每個晶體管的價格只有千分之一美分。據有關統計,按運算10萬次乘法的價格算,IBM704電腦為1美元,IBM709降到20美分,而60年代中期IBM耗資50億研制的IBM360系統電腦已變?yōu)?.5美分。
后來人們對它進行歸納,主要有以下三種“版本”:
1、集成電路芯片上所集成的電路的數目,每隔18個月就翻一番。
2、微處理器的性能每隔18個月提高一倍,而價格下降一倍。
3、用一個美元所能買到的電腦性能,每隔18個月翻兩番。
以上幾種說法中,以第一種說法最為普遍,第二、三兩種說法涉及到價格因素,其實質是一樣的。三種說法雖然各有千秋,但在一點上是共同的,即“翻番”的周期都是18個月,至于“翻一番”(或兩番)的是“集成電路芯片上所集成的電路的數目”,是整個“計算機的性能”,還是“一個美元所能買到的性能”就見仁見智了。
摩爾定律的準確性
摩爾定律到底準不準?讓我們先來看幾個具體的數據。1975年,在一種新出現的電荷前荷器件存儲器芯片中,的的確確含有將近65000個元件,與十年前摩爾的預言的確驚人地一致!另據Intel公司公布的統計結果,單個芯片上的晶體管數目,從1971年4004處理器上的2300個,增長到1997年 Pentium II處理器上的7.5百萬個,26年內增加了3200倍。我們不妨對此進行一個簡單的驗證:如果按摩爾本人“每兩年翻一番”的預測,26年中應包括13個翻番周期,每經過一個周期,芯片上集成的元件數應提高2n倍(0≤n≤12),因此到第13個周期即26年后元件數應提高了212=4096倍,作為一種發(fā)展趨勢的預測,這與實際的增長倍數3200倍可以算是相當接近了。如果以其他人所說的18個月為翻番周期,則二者相去甚遠??梢姀拈L遠來看,還是摩爾本人的說法更加接近實際。
也有人從個人計算機(即PC)的三大要素--微處理器芯片、半導體存儲器和系統軟件來考察摩爾定律的正確性。微處理器方面,從1979年的8086和 8088,到1982年的80286,1985年的80386,1989年的80486,1993年的Pentium,1996年的 PentiumPro,1997年的PentiumII,功能越來越強,價格越來越低,每一次更新換代都是摩爾定律的直接結果。與此同時PC機的內存儲器容量由最早的480k擴大到8M,16M,與摩爾定律更為吻合。系統軟件方面,早期的計算機由于存儲容量的限制,系統軟件的規(guī)模和功能受到很大限制,隨著內存容量按照摩爾定律的速度呈指數增長,系統軟件不再局限于狹小的空間,其所包含的程序代碼的行數也劇增:Basic的源代碼在1975年只有4,000 行,20年后發(fā)展到大約50萬行。微軟的文字處理軟件Word,1982年的第一版含有27,000行代碼,20年后增加到大約200萬行。有人將其發(fā)展速度繪制一條曲線后發(fā)現,軟件的規(guī)模和復雜性的增長速度甚至超過了摩爾定律。系統軟件的發(fā)展反過來又提高了對處理器和存儲芯片的需求,從而刺激了集成電路的更快發(fā)展。
這里需要特別指出的是,摩爾定律并非數學、物理定律,而是對發(fā)展趨勢的一種分析預測,因此,無論是它的文字表述還是定量計算,都應當容許一定的寬裕度。從這個意義上看,摩爾的預言實在是相當準確而又難能可貴的了,所以才會得到業(yè)界人士的公認,并產生巨大的反響。
摩爾定律的結束
摩爾定律問世至今已近40年了。人們不無驚奇地看到半導體芯片制造工藝水平以一種令人目眩的速度提高。目前,Intel的微處理器達芯片Pentium 4的主頻已高2G(即12000M),2011年則要推出含有10億個晶體管、每秒可執(zhí)行1千億條指令的芯片。人們不禁要問:這種令人難以置信的發(fā)展速度會無止境地持續(xù)下去嗎?不需要復雜的邏輯推理就可以知道:芯片上元件的幾何尺寸總不可能無限制地縮小下去,這就意味著,總有一天,芯片單位面積上可集成的元件數量會達到極限。問題只是這一極限是多少,以及何時達到這一極限。業(yè)界已有專家預計,芯片性能的增長速度將在今后幾年趨緩。一般認為,摩爾定律能再適用10年左右。其制約的因素一是技術,二是經濟。
從技術的角度看,隨著硅片上線路密度的增加,其復雜性和差錯率也將呈指數增長,同時也使全面而徹底的芯片測試幾乎成為不可能。一旦芯片上線條的寬度達到納米(10-9米)數量級時,相當于只有幾個分子的大小,這種情況下材料的物理、化學性能將發(fā)生質的變化,致使采用現行工藝的半導體器件不能正常工作,摩爾定律也就要走到它的盡頭了。
從經濟的角度看,正如上述摩爾第二定律所述,目前是20-30億美元建一座芯片廠,線條尺寸縮小到0.1微米時將猛增至100億美元,比一座核電站投資還大。由于花不起這筆錢,迫使越來越多的公司退出了芯片行業(yè)。看來摩爾定律要再維持十年的壽命,也決非易事。
然而,也有人從不同的角度來看問題。美國一家名叫CyberCash公司的總裁兼CEO丹·林啟說,“摩爾定律是關于人類創(chuàng)造力的定律,而不是物理學定律”。持類似觀點的人也認為,摩爾定律實際上是關于人類信念的定律,當人們相信某件事情一定能做到時,就會努力去實現它。摩爾當初提出他的觀察報告時,他實際上是給了人們一種信念,使大家相信他預言的發(fā)展趨勢一定會持續(xù)。
電子產業(yè)或超越摩爾發(fā)展
由于同樣小的空間里集成越來越多的硅電路,產生的熱量也越來越大,這種原本兩年處理能力加倍的速度已經慢慢下滑。此外,還有更多更大的問題也慢慢顯現,如今頂級的芯片制造商的電路精度已經達到14納米,比大多數病毒還要小。但是,全球半導體行業(yè)研發(fā)規(guī)劃藍圖協會主席保羅·加爾吉尼( Paolo Gargini)表示:“到2020年,以最快的發(fā)展速度來看,我們的芯片線路可以達到2-3納米級別,然而在這個級別上只能容納10個原子,這樣的設備,還能叫做一個‘設備’嗎?”
恐怕不能。到了那樣的級別,電子的行為將受限于量子的不確定性,晶體管將變得不可靠。在這樣的前景下,盡管這方面已經有無數研究,但目前人們仍然無法找到可以替代如今的硅片技術的新的材料或技術。
下個月發(fā)布的行業(yè)研究規(guī)劃藍圖將史無前例地不以摩爾定律為中心,相反,新的戰(zhàn)略可能是“超越摩爾”(More than Moore ):與以往首先改善芯片、軟件隨后跟上的發(fā)展趨勢不同,以后半導體行業(yè)的發(fā)展將首先看軟件——從手機到超級電腦再到云端的數據中心——然后反過來看要支持軟件和應用的運行需要什么處理能力的芯片來支持,由于新的計算設備變得越來越移動化,新的芯片中,可能會有新的一代的傳感器、電源管理電路和其他的硅設備。
這種局勢的轉變,也改變了半導體行業(yè)圍繞摩爾定律不再團結一致。“大家都不確定新的研究規(guī)劃藍圖意味著什么,” 愛荷華大學計算機科學家丹尼爾·里德(Daniel Reed)表示。位于華盛頓DC的 半導體行業(yè)協會(The Semiconductor Industry Association, SIA)代表所有美國半導體企業(yè),已經表示不再參與全球半導體行業(yè)研究規(guī)劃藍圖的章程,而是自行決定研發(fā)進度。
盡管摩爾定律已經走向黃昏,但這并不意味著半導體行業(yè)停止了發(fā)展。丹尼爾·里德將之與飛機制造行業(yè)進行比較:“現在的波音787并不比上世紀50年代的波音707快多少——但這兩個型號的飛機可差太多了,波音787的創(chuàng)新體現在其他地方,比如全電子控制、碳纖維機身等,計算機行業(yè)也是如此,創(chuàng)新將會繼續(xù),但是會體現在更細小和更復雜的地方。”
評論