chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何利用好機(jī)器學(xué)習(xí),數(shù)據(jù)分析與處理很重要

獨(dú)愛(ài)72H ? 來(lái)源:網(wǎng)絡(luò)整理 ? 作者:佚名 ? 2020-04-12 22:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(文章來(lái)源:網(wǎng)絡(luò)整理)
機(jī)器學(xué)習(xí)涉及到很多的學(xué)科和門類,在我看來(lái),它更像是各個(gè)學(xué)科的集合體,因此想要學(xué)好機(jī)器學(xué)習(xí),你需要具備很多方面的知識(shí),不過(guò)也并不是所有人會(huì)用到機(jī)器學(xué)習(xí)的每個(gè)細(xì)節(jié),因此可以根據(jù)自己的專長(zhǎng)有針對(duì)性的學(xué)習(xí)。

我目前也在學(xué)習(xí)相關(guān)的技術(shù)資料,再加上之前也接觸過(guò)這方面的工作,所以對(duì)于機(jī)器學(xué)習(xí)方面還是有一定的了解,在我看來(lái)無(wú)論是什么樣的機(jī)器學(xué)習(xí)模型、分類、算法都是依托于原始數(shù)據(jù)的,原始數(shù)據(jù)的分析和處理是前提也是很重要的部分。

通常我身邊的工程師在進(jìn)行相關(guān)設(shè)計(jì)的時(shí)候有一個(gè)慣性的思維,先采集一大堆的數(shù)據(jù)然后用工具分析特征和生成模型,之后通過(guò)大量的數(shù)據(jù)采集來(lái)實(shí)現(xiàn)模型的修正和完善,這種方式應(yīng)該也是很多設(shè)計(jì)人員通常的思路,而且一般的情況下要求硬件采集設(shè)備盡可能的提供多種參數(shù),這樣可以豐富算法模型的輸入?yún)?shù),理論上可以更好地接近實(shí)際的結(jié)果,在純技術(shù)的角度上這個(gè)是可行的,而且隨著樣本量的增加,采用機(jī)器學(xué)習(xí)的思路,最終的模型和算法會(huì)越來(lái)越精確。

這樣的設(shè)計(jì)方法對(duì)于已有理想樣本或是可以很容易獲取樣本數(shù)據(jù)的前提下是非常高效的,但是如果已有樣本不是很理想,存在大量干擾成分,樣本數(shù)據(jù)受人為因素或者必須由人工采集獲取數(shù)據(jù)時(shí),傳統(tǒng)的方法就沒(méi)有太大優(yōu)勢(shì)了。這個(gè)時(shí)候需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和必要的分析,需要確定幾個(gè)問(wèn)題:

一、預(yù)先確定幾個(gè)需要研究的參數(shù),選擇參數(shù)時(shí)需要有一定的依據(jù)和相關(guān)性,拿紅外信號(hào)輸出信號(hào)分析舉例,可以從公開(kāi)的資料中知道紅外傳感器會(huì)受到溫度和光譜范圍的影響導(dǎo)致輸出曲線的變化,那么溫度和光譜范圍就是需要研究的參數(shù)。

二、確定了參數(shù)之后,先不要對(duì)所有參數(shù)進(jìn)行樣本數(shù)據(jù)采樣,而是針對(duì)單一參數(shù)進(jìn)行數(shù)據(jù)采樣,徹底明確單一參數(shù)對(duì)于最終結(jié)果的影響程度,也就是權(quán)重,用函數(shù)關(guān)系表示即:Y = F(X), Y為結(jié)果,X為樣本數(shù)據(jù)參數(shù),數(shù)據(jù)處理過(guò)程包括平滑、篩選、剔除、插入等基本操作,也就是預(yù)處理過(guò)程,之后可以生成基本的函數(shù)關(guān)系或?qū)φ毡恚瑸楹罄m(xù)的大模型的建立提供數(shù)據(jù)支持。

三、將每種數(shù)據(jù)參數(shù)的影響程度量化之后,我們就獲取了所有的參數(shù)對(duì)照表和函數(shù)對(duì)應(yīng)關(guān)系,利用這些已有的結(jié)果建立整個(gè)算法模型和框架結(jié)構(gòu),在模型中將每種數(shù)據(jù)的權(quán)重設(shè)計(jì)好,最終形成一個(gè)初步的機(jī)器學(xué)習(xí)模式。

四、在實(shí)現(xiàn)了以上三步之后,我們最終可以通過(guò)大數(shù)據(jù)樣本的采集來(lái)實(shí)現(xiàn)整個(gè)機(jī)器學(xué)習(xí)模型的完善,最終實(shí)現(xiàn)之前制定的目標(biāo)。
(責(zé)任編輯:fqj)

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何有效利用高光譜成像技術(shù)提升數(shù)據(jù)分析效率

    隨著人工智能和大數(shù)據(jù)技術(shù)的快速發(fā)展,高光譜成像技術(shù)作為一種融合光譜信息與空間影像的新興技術(shù),正日益成為提升數(shù)據(jù)分析效率的重要工具。在農(nóng)業(yè)監(jiān)測(cè)、環(huán)境保護(hù)、礦產(chǎn)勘探等多個(gè)行業(yè)中,高光譜成像通過(guò)獲取精準(zhǔn)
    的頭像 發(fā)表于 09-11 16:13 ?485次閱讀
    如何有效<b class='flag-5'>利用</b>高光譜成像技術(shù)提升<b class='flag-5'>數(shù)據(jù)分析</b>效率

    AI數(shù)據(jù)分析儀設(shè)計(jì)原理圖:RapidIO信號(hào)接入 平板AI數(shù)據(jù)分析

    AI數(shù)據(jù)分析儀, 平板數(shù)據(jù)分析儀, 數(shù)據(jù)分析儀, AI邊緣計(jì)算, 高帶寬數(shù)據(jù)輸入
    的頭像 發(fā)表于 07-17 09:20 ?394次閱讀
    AI<b class='flag-5'>數(shù)據(jù)分析</b>儀設(shè)計(jì)原理圖:RapidIO信號(hào)接入 平板AI<b class='flag-5'>數(shù)據(jù)分析</b>儀

    Mathematica 在數(shù)據(jù)分析中的應(yīng)用

    ,在數(shù)據(jù)分析領(lǐng)域發(fā)揮著重要作用。 1. 數(shù)據(jù)導(dǎo)入 在進(jìn)行數(shù)據(jù)分析之前,首先需要將數(shù)據(jù)導(dǎo)入到Mathematica中。Mathematica支
    的頭像 發(fā)表于 12-26 15:41 ?1000次閱讀

    絕緣電阻測(cè)試儀數(shù)據(jù)分析處理

    絕緣電阻測(cè)試儀主要用于檢查電氣設(shè)備或電氣線路對(duì)地及相間的絕緣電阻。將所測(cè)得的結(jié)果與有關(guān)數(shù)據(jù)比較,這是對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析判斷的重要方法。以下是對(duì)絕緣電阻測(cè)試儀的數(shù)據(jù)分析
    的頭像 發(fā)表于 12-10 15:00 ?1300次閱讀

    數(shù)據(jù)可視化與數(shù)據(jù)分析的關(guān)系

    在當(dāng)今這個(gè)信息爆炸的時(shí)代,數(shù)據(jù)無(wú)處不在。無(wú)論是企業(yè)運(yùn)營(yíng)、科學(xué)研究還是個(gè)人決策,我們都需要從海量的數(shù)據(jù)中提取有價(jià)值的信息。數(shù)據(jù)分析數(shù)據(jù)可視化作為兩個(gè)關(guān)鍵的工具,它們幫助我們理解、解釋和
    的頭像 發(fā)表于 12-06 17:09 ?1276次閱讀

    bds 行業(yè)發(fā)展趨勢(shì)分析 bds在大數(shù)據(jù)中的應(yīng)用

    聯(lián)網(wǎng)、云計(jì)算等技術(shù)的快速發(fā)展,BDS將與這些技術(shù)更加緊密地融合,推動(dòng)數(shù)據(jù)分析處理能力的進(jìn)一步提升。 機(jī)器學(xué)習(xí)算法的優(yōu)化和深度學(xué)習(xí)技術(shù)的應(yīng)用
    的頭像 發(fā)表于 11-22 15:47 ?2143次閱讀

    LLM在數(shù)據(jù)分析中的作用

    的游戲規(guī)則。 1. 數(shù)據(jù)預(yù)處理 數(shù)據(jù)預(yù)處理數(shù)據(jù)分析的第一步,也是至關(guān)重要的一步。LLM在這一階
    的頭像 發(fā)表于 11-19 15:35 ?1486次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析
    的頭像 發(fā)表于 11-16 01:07 ?1389次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    RNN在實(shí)時(shí)數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),實(shí)時(shí)數(shù)據(jù)分析變得越來(lái)越重要。在眾多的機(jī)器學(xué)習(xí)模型中,遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,
    的頭像 發(fā)表于 11-15 10:11 ?1090次閱讀

    eda與傳統(tǒng)數(shù)據(jù)分析的區(qū)別

    EDA(Exploratory Data Analysis,探索性數(shù)據(jù)分析)與傳統(tǒng)數(shù)據(jù)分析之間存在顯著的差異。以下是兩者的主要區(qū)別: 一、分析目的和方法論 EDA 目的 :EDA的主要目的是對(duì)
    的頭像 發(fā)表于 11-13 10:52 ?1146次閱讀

    為什么選擇eda進(jìn)行數(shù)據(jù)分析

    數(shù)據(jù)科學(xué)領(lǐng)域,數(shù)據(jù)分析是一個(gè)復(fù)雜且多步驟的過(guò)程,它涉及到數(shù)據(jù)的收集、清洗、探索、建模和解釋。在這些步驟中,探索性數(shù)據(jù)分析(EDA)扮演著至關(guān)重要
    的頭像 發(fā)表于 11-13 10:41 ?999次閱讀

    raid 在大數(shù)據(jù)分析中的應(yīng)用

    RAID(Redundant Array of Independent Disks,獨(dú)立磁盤冗余陣列)在大數(shù)據(jù)分析中的應(yīng)用主要體現(xiàn)在提高存儲(chǔ)系統(tǒng)的性能、可靠性和容量上。以下是RAID在大數(shù)據(jù)分析
    的頭像 發(fā)表于 11-12 09:44 ?960次閱讀

    SUMIF函數(shù)在數(shù)據(jù)分析中的應(yīng)用

    在商業(yè)和科學(xué)研究中,數(shù)據(jù)分析是一項(xiàng)基本且關(guān)鍵的技能。Excel作為最常用的數(shù)據(jù)分析工具之一,提供了多種函數(shù)來(lái)幫助用戶處理分析數(shù)據(jù)。SUMI
    的頭像 發(fā)表于 11-11 09:14 ?1271次閱讀

    智能制造中的數(shù)據(jù)分析應(yīng)用

    隨著工業(yè)4.0的推進(jìn),智能制造已經(jīng)成為制造業(yè)轉(zhuǎn)型升級(jí)的關(guān)鍵。數(shù)據(jù)分析作為智能制造的核心驅(qū)動(dòng)力,正逐步改變傳統(tǒng)的生產(chǎn)方式,為企業(yè)帶來(lái)更高的效率和更大的競(jìng)爭(zhēng)力。 一、數(shù)據(jù)分析在智能制造中的重要性 提高
    的頭像 發(fā)表于 11-07 09:56 ?1230次閱讀

    數(shù)據(jù)分析在數(shù)字化中的作用

    重要數(shù)據(jù)分析是指使用統(tǒng)計(jì)和邏輯方法對(duì)數(shù)據(jù)進(jìn)行處理和解釋的過(guò)程。它涉及到數(shù)據(jù)的收集、清洗、轉(zhuǎn)換、建模和解釋,目的是發(fā)現(xiàn)
    的頭像 發(fā)表于 10-27 17:35 ?1430次閱讀