chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

動力鋰電池的全生產流程缺陷檢測方案

新機器視覺 ? 來源:制造邏輯 ? 作者:制造邏輯 ? 2020-12-31 09:58 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

【挑戰(zhàn)】

該方案來自某全球領先的鋰電池研發(fā)和制造企業(yè)。面對不斷增加的市場需求,該企業(yè)積極引入了智能制造技術,對多種鋰電池的各個生產環(huán)節(jié)進行調控與優(yōu)化,提高生產效率,在保持優(yōu)異品質的同時突破產能瓶頸。以該企業(yè)的核心產品之一——動力鋰電池為例。動力鋰電池的基本單元是電芯。每一個完備電芯的生產都必須經過極其嚴格的褶皺、暗斑、掉料以及絕緣膜異常等瑕疵的缺陷檢測,以保證最終產品的可靠性與安全性。但在大規(guī)模產線上,如果采用人工檢測等傳統(tǒng)方式來執(zhí)行毫米級的缺陷檢測,不僅速度慢、耗時巨大,精細和準確度更是無從談起。即便引入基于工業(yè)相機的計算機圖像輔助檢測等自動化方法,也存在缺乏擴展性和靈活性等問題,無法有效應對新產品導致的新瑕疵形式的檢測,限制了產能。

【解決方案】

為有效應對以上問題,這家企業(yè)在英特爾的支持下,利用AI 方法構建全新的動力電池缺陷檢測方案。通過對產能需求的評估,該企業(yè)希望新方案能夠達到單條產線 423FPS(Frame Per Second,幀率)的檢測速度,同時檢測準確率達到 1DPPM(Defect Part Per Million,每百萬的缺陷數(shù)量)。

新方案一方面根據(jù)動力電池產線的實際部署情況,以基于英特爾 架構的平臺為基礎,構建云(總部云數(shù)據(jù)中心)-邊(邊緣計算節(jié)點)- 端(產線工控機、工業(yè)相機)的架構,并引入英特爾 至強 可擴展處理器、Analytics Zoo 和 OpenVINO 工具套件,以及面向英特爾 架構優(yōu)化的 PyTorch 等軟硬件,形成端到端的機器視覺缺陷檢測方案;另一方面,根據(jù)檢測場景的差異,方案中也部署了多種不同的深度學習機器學習算法模型,讓檢測速度和準確率均獲得了顯著提升。

一、“云 - 邊 - 端” 協(xié)同,構建基于機器視覺的缺陷檢測平臺

為構建高性能的缺陷檢測平臺,雙方首先從基礎架構入手,根據(jù)總部云數(shù)據(jù)中心、各產線的生產管理系統(tǒng)、各類檢測設備在缺陷檢測流程中的不同作用,以及所處的不同場景帶來的特定需求,設計出 “云 - 邊 - 端” 協(xié)同的方案。

“云” 端的總部數(shù)據(jù)中心,可以利用強大的計算能力和來自各產線的豐富數(shù)據(jù),根據(jù)生產場景需要進行集中化的模型訓練,再將訓練好的模型發(fā)布給 “邊緣” 和 “端” 側。

“邊緣” 計算節(jié)點部署在分廠或產線服務器中,主要包括推理服務器、模型管理器以及模型倉庫等組件,用于較重模型的推理,并將推理結果推送至產線質量控制系統(tǒng)中。

“端” 則位于工廠內每條生產線上,主要執(zhí)行圖像采集、預處理、預分類及輕量級推理工作。

abadbc74-4a98-11eb-8b86-12bb97331649.jpg

工業(yè)視覺平臺系統(tǒng)架構圖

這一架構經部署后對提升缺陷檢測效率效果顯著。如上圖所示,首先,方案采用了分層推理的方案。從前文可知,無論哪種目標檢測算法,都會耗費龐大的算力和帶寬(用于數(shù)據(jù)傳輸)資源;且離產線越遠,檢測時延就越高。在新方案中,端側系統(tǒng)采用開源的 OpenCV 計算機視覺庫對采集的圖像流實施預處理,并將預分類等簡單工作負載部署在基于英特爾 酷睿 i5/i7 處理器的工業(yè) PC 上,且使用輕量級模型進行推理,將結果直接反饋回產線,應用效率極高。

對于目標檢測、圖像分割等較 “重” 的工作負載,則通過邊緣計算節(jié)點完成。這些節(jié)點由基于第二代英特爾 至強 可擴展處理器的服務器(集群)構建,可以從云數(shù)據(jù)中心調取合適的模型和參數(shù),并通過英特爾提供的統(tǒng)一大數(shù)據(jù)分析及 AI 平臺Analytics Zoo 來構建分布式的推理方案。而云端數(shù)據(jù)中心則主要承擔高強度模型訓練、推理以及管理職責。除了由基于第二代英特爾 至強 可擴展處理器的服務器構成高性能計算集群外,云端還配備了可擴展的中心存儲數(shù)據(jù)庫,存儲各類中間過程數(shù)據(jù)以及最終模型和參數(shù)。

經過本地預處理的海量圖像流匯集到云端后,方案采用Labelme 標注工具對數(shù)據(jù)集中的圖像進行標注,并將標注后的特征類別及位置信息傳輸?shù)接嬎慵褐羞M行訓練和推理。

Labelme 工具不僅可以標注各種形狀,還具備圖像分類、目標檢測、場景分割、實例分割、視頻標注等功能,可以很好覆蓋動力電池缺陷檢測的范圍。更重要的是,該工具支持像素級的細粒度標注,有助于提升標注效率與準確度。

值得一提的是,云端的算力雖然充沛,但其遠離產線,實時性會受到一定影響。新方案在云端引入了面向英特爾 架構優(yōu)化的 PyTorch 框架,以及 OpenVINO 工具套件來進一步加速推理過程。原生 PyTorch 深度學習框架內置了強大的視覺工具包 torchvision,包含目前流行的數(shù)據(jù)集、模型結構和常用的圖片轉換工具,可輕松應對各種圖像檢測場景。新框架不僅繼承了原生 PyTorch 簡潔、靈活的特點,還引入面向深度神經網絡的英特爾 數(shù)學核心函數(shù)庫(Intel Math Kernel Library forDeep Neural Networks, 英特爾 MKL-DNN),其包含的高度矢量化、線程化的構建模塊,能有效提高框架在基于英特爾 架構的處理器上的運行速度,配合 OpenVINO 工具套件所提供的模型優(yōu)化器、指令集優(yōu)化等功能,令新方案獲得了非常好的推理性能。

最后,Analytics Zoo 的引入使 “云 - 邊 - 端” 協(xié)同架構的運行變得更為順暢。這一架構將 Spark、PyTorch、OpenVINO 工具套件以及其它軟件和框架,無縫集成到同一管道中,有助于新方案將數(shù)據(jù)存儲、數(shù)據(jù)處理以及訓練推理的流水線整合到統(tǒng)一的基礎設施,不僅大幅提升新方案的部署效率、資源利用率和可擴展性,也能減少硬件管理以及系統(tǒng)運維成本。

二、針對不同檢測場景,采用適宜檢測算法

在這家全球領先的鋰電池生產制造企業(yè)的動力電池產線中,有三種主要的動力電池缺陷檢測場景:絕緣膜間隙檢測、正負極偏差檢測以及絕緣膜異常問題檢測。不同的場景對檢測環(huán)境、檢測速度、檢測精度以及檢測參數(shù)都有不同的要求。通過縝密的技術分析,英特爾幫助該企業(yè)針對不同檢測場景部署了不同的目標檢測模型。

■ 絕緣膜間隙檢測

絕緣膜是電池充放電時鋰離子傳輸?shù)闹匾橘|,其間隙過大或過小都會影響電池的性能,因此在生產中需要嚴格把控絕緣膜的間隙范圍。但如圖所示,絕緣膜的厚度僅為毫米級別,對檢測精度要求高。

英特爾在方案中建議采用 Mask R-CNN 目標檢測模型,來實現(xiàn)精細的絕緣膜間隙檢測流程。Mask R-CNN 模型是 FasterRCNN 算法模型的一個分支,特點是可對檢測目標實施逐像素的分類,進而確定圖像中檢測目標的類別和位置,并對其進行分割,尤其適合精密檢測場景的使用。采用 Mask R-CNN 模型對圖片進行像素級分類,分割出檢測邊緣,再通過 OpenCV測量實現(xiàn)產線所需的 0.3-3.9mm 的測量需求,超過該范圍即可確定為缺陷電池。

■ 正負極偏差檢測

在動力鋰電池生產過程中,正極片、絕緣膜、負極片三層材料會疊壓在一起進行卷繞,正常的電池正負極需交替出現(xiàn),且個數(shù)一定。如圖所示,圖片中細長的為陰極,粗的為陽極。如果出現(xiàn)單個極連續(xù)出現(xiàn)或者個數(shù)不符情況,電池即可被視為存在缺陷,需及時進行自動糾偏調整來控制質量,這對實時性的要求非常高,處理延遲要求在數(shù)十毫秒內。

英特爾在方案中建議采用輕量級快速目標檢測模型——YOLOv3來進行正負極偏差檢測。如前文(第14頁 “YOLO算法” 部分)所述,YOLO算法模型的主要特點就是檢測速度高,而YOLO v3模型作為其輕量級進階版本,在檢測準確率和推理速度上有了進一步的提升,尤其適用于諸如動力電池產線正負極偏差檢測所需的實時性和小型目標敏感檢測。

■絕緣膜異常問題檢測

絕緣膜異常問題檢測主要用于避免動力電池中的絕緣膜異常,導致正負極接觸而引發(fā)短路事故。如圖所示,絕緣膜非常薄,因此該檢測對精細度和準確率要求非常高。在經典的深度神經網絡中,網絡層數(shù)越多,能夠提取到的圖像特征越豐富,也更符合該類檢測的需求。但隨著網絡深度的增加,退化(Degradation)問題也隨之產生,即準確率會先上升直至飽和,如果繼續(xù)增加深度,準確率反而會下降。

ResNet 可有效解決這一問題。其由多個殘差塊和恒等映射塊拼接而成,與一般深度神經網絡相比,能有效避免深層網絡的梯度消失和退化問題。因此,英特爾在方案中建議采用經典的ResNet50 殘差網絡實施訓練。

三、混合學習方法和遷移學習訓練,提升檢測效率和準確率

經過產線檢測實踐發(fā)現(xiàn),通過單一的深度學習方法獲得更優(yōu)的準確率與召回率,需要手工對 logits 進行適當?shù)恼{整。這無疑給整個檢測過程帶來了一定的不確定性,并增加了使用難度。為此,英特爾在方案中推薦采用機器學習中的支持向量機(Support Vector Machine, SVM)分類器與 ResNet50 殘差網絡一起,組成混合模型來實施檢測,同樣也可以達到類似的優(yōu)化效果。SVM 分類器能夠依據(jù)支持向量與分類超平面間隔最大化的原則,通過多次訓練迭代,尋求最優(yōu)的分類超平面來實現(xiàn)數(shù)據(jù)分類。針對絕緣膜異常檢測中的多分類(multiple-class)問題,SVM 能將其分解為多個二分類問題,再構造多個分類器來解決。ResNet50+SVM 的組合方案,不僅很好地解決了絕緣膜破損、丟失、褶皺等異常問題的檢測難題,還大幅提升了檢測效率和準確率。模型的檢測效率和準確度除了與選擇合適的模型相關外,還需要有充足的訓練數(shù)據(jù)。一般情況下,要滿足實用要求,數(shù)據(jù)集量級需達到百萬級甚至千萬級。但在實際產線中,如此高量級的數(shù)據(jù)集很難收集,且采用大數(shù)據(jù)集從頭訓練也需要耗費大量時間及資源。

【方案價值】

創(chuàng)新的架構以及適宜檢測算法的運用,使該企業(yè)的電池生產全流程缺陷檢測方案一上線,就獲得了良好的效果。實際部署后,單條產線的檢測速度和準確度都超過了預期指標。

在滿足產線所需的檢測精度和檢測速度之外,新方案在目標檢測模型的創(chuàng)新應用上也獲得顯著效果。以 ResNet50 殘差網絡和 SVM 分類器的混合模型在絕緣膜異常問題檢測場景中的使用效果為例,在驗證測試中,先以 1,000 張圖片作為樣本集,在 ResNet50 模型中進行模型微調得到基準值(97.85% 的準確率和 94% 的召回率),然后在此基礎上分別進行參數(shù)調整,以及使用 ResNet50+SVM 的混合模型進行訓練。驗證結果如圖 2-1-16 所示,在 ResNet50 模型中進行參數(shù)調整優(yōu)化后,可將準確率提高至 99%,將召回率提高至 97.56%,而加入SVM 分類器后,更是將準確率提升至 99.12%,將召回率提升至 99.16%,檢測精度提升顯著。

ad8d14f4-4a98-11eb-8b86-12bb97331649.jpg

原文標題:動力鋰電池全生產流程缺陷檢測方案

文章出處:【微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰電池
    +關注

    關注

    260

    文章

    8416

    瀏覽量

    176280
  • 智能制造
    +關注

    關注

    48

    文章

    5898

    瀏覽量

    77889

原文標題:動力鋰電池全生產流程缺陷檢測方案

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    鋰電池自動化生產線的現(xiàn)狀與發(fā)展

    鋰電池自動化生產線的概述 鋰電池自動化生產線是指采用自動化設備和控制系統(tǒng),實現(xiàn)鋰電池從原材料到成品的
    的頭像 發(fā)表于 07-11 10:25 ?125次閱讀

    賦能未來能源:蘭寶傳感引領新能源鋰電池智能制造新時代

    在全球能源轉型與碳中和目標的推動下,新能源鋰電池已成為電動汽車、儲能系統(tǒng)及智能設備的核心動力來源。面對市場對高效、安全、高精度電池生產的迫切需求,上海蘭寶傳感科技股份有限公司憑借27年
    的頭像 發(fā)表于 07-09 13:21 ?119次閱讀
    賦能未來能源:蘭寶傳感引領新能源<b class='flag-5'>鋰電池</b>智能制造新時代

    鋰電池老化儀廠家:鋰電池品質檢測關鍵支撐

    鋰電池產業(yè)蓬勃發(fā)展的當下,鋰電池老化儀廠家扮演著至關重要的角色。他們專注于研發(fā)和生產用于評估鋰電池性能和壽命的設備,為鋰電池的研發(fā)、
    的頭像 發(fā)表于 05-23 11:40 ?191次閱讀

    DIY一款船用鋰電池的思路

    占用空間下降15%e、鋰電池配置了軟件管理系統(tǒng),可以監(jiān)測電池電壓、電流、溫度、電量狀態(tài)并實時對鋰電池進行保護。眾所周知,除了電芯的選擇很重要,其次就是鋰電池的保護板,它對
    發(fā)表于 05-19 19:40

    LED產品SMT生產流程防硫注意事項

    在LED應用產品SMT生產流程中硫化最可能出現(xiàn)在回流焊接環(huán)節(jié)。因為金鑒從發(fā)生的各種不良案例來看,支架銀層硫化的強烈、快慢程度與硫含量、以及溫度、時間有直接關系。而回流焊環(huán)節(jié)是典型的高溫高濕的環(huán)境
    的頭像 發(fā)表于 05-15 16:07 ?241次閱讀
    LED產品SMT<b class='flag-5'>生產流程</b>防硫注意事項

    鋰電池熱失控原理及安全檢測技術解析

    鋰≥130℃ 推薦檢測設備與技術方案(選自菲尼克斯產品): PX08002鋰電池熱釋放速率測試系統(tǒng) 功能設計: 基于氧消耗原理,實時監(jiān)測HRR、THR等參數(shù),符合UL 9540A標準。 技術優(yōu)勢
    發(fā)表于 05-12 16:51

    新能源時代推動鋰電池生產設備進步

    與可持續(xù)發(fā)展的關鍵因素。從原材料的精細處理到電芯的精密制造,再到電池組的智能組裝與測試,每一步生產流程的技術革新都在為鋰電池的性能提升開辟新的路徑。
    的頭像 發(fā)表于 03-31 10:58 ?342次閱讀
    新能源時代推動<b class='flag-5'>鋰電池</b><b class='flag-5'>生產</b>設備進步

    ALVA空間智能技術重塑工業(yè)制造生產流程

    在工業(yè)制造持續(xù)向“工業(yè)智造”演進的趨勢下,“如何重塑工業(yè)制造生產流程”已經成為工業(yè)領域亟待解決的問題。
    的頭像 發(fā)表于 03-31 10:55 ?453次閱讀

    鋰電池、帶電池產品出口清關UN38.3認證辦理流程

    )的測試。根據(jù)規(guī)章要求,航空公司和機場貨物收運部門應對鋰電池進行運輸文件審查,重要的是每種型號的鋰電池UN38.3安全檢測報告。 即要求鋰電池運輸前,必須要通過高度模擬、高低溫循環(huán)、振
    發(fā)表于 02-12 08:54

    鋰電池MES系統(tǒng):全面優(yōu)化生產流程,提升質量與效率

    萬界星空科技鋰電池MES系統(tǒng)通過生產計劃管理、生產過程監(jiān)控、質量管理、設備管理和數(shù)據(jù)采集與分析等功能,實現(xiàn)了生產過程的全面優(yōu)化和管理。這些功能相輔相成,共同提升了
    的頭像 發(fā)表于 02-06 13:53 ?482次閱讀
    <b class='flag-5'>鋰電池</b>MES系統(tǒng):全面優(yōu)化<b class='flag-5'>生產流程</b>,提升質量與效率

    hdmi連接器生產流程

    HDMI連接器的生產流程涉及多個步驟,這些步驟共同確保了連接器的質量和性能。以下是一個典型的HDMI連接器生產流程的概述:
    的頭像 發(fā)表于 01-28 13:44 ?819次閱讀

    Monitor Wafer的核心功能、特點、生產流程和應用

    ? 文本簡單介紹了非生產晶圓Monitor Wafer的核心功能、特點、生產流程和應用。 Monitor Wafer,即非生產晶圓(Non-Product Wafer,簡稱NPW),在現(xiàn)代半導體
    的頭像 發(fā)表于 12-06 10:59 ?1202次閱讀

    如何設計鋰電池相關電路避免鋰電池邊充邊放?

    、有沒有一種電壓檢測的手段? 當檢測鋰電池電壓較低的時候,通過EN引腳切斷DCDC電路從而阻止鋰電池放電,并在此時接通CN3791和鋰電池
    發(fā)表于 11-15 10:59

    革新鋰電池PACK線:重塑生產效能新高度

    鋰電池PACK線項目通過采用明達技術MR30分布式IO如何與歐姆龍PLC完美協(xié)同,在鋰電池PACK線的運輸環(huán)節(jié)中發(fā)揮關鍵作用,助力企業(yè)實現(xiàn)生產流程的全面優(yōu)化。
    的頭像 發(fā)表于 10-10 09:44 ?663次閱讀
    革新<b class='flag-5'>鋰電池</b>PACK線:重塑<b class='flag-5'>生產</b>效能新高度

    認識電池分選機:優(yōu)化電池生產流程的利器

    的整體性能和顧客的滿意度。作為現(xiàn)代電池制造流程中的關鍵設備,分選機對于改善生產流程、增強產品品質和提升生產效率具有至關重要的作用。比斯特分選機融合了前端的測量技術、智能算法和自動化控制
    的頭像 發(fā)表于 09-12 15:59 ?718次閱讀
    認識<b class='flag-5'>電池</b>分選機:優(yōu)化<b class='flag-5'>電池</b><b class='flag-5'>生產流程</b>的利器