chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

比特對編碼的原理設計

FPGA之家 ? 來源:FPGA之家 ? 作者:FPGA之家 ? 2022-07-14 09:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

比特對編碼與比特對編碼乘法器的設計

今天一起看看比特對編碼(有的也把它稱為基4booth編碼,名字不重要,主要是思想),可以解決上文中提到的問題

比特對編碼原理

booth重編碼的主要問題在于不能過濾掉010這樣序列。故考慮將通過連續(xù)相鄰兩位進行編碼,每次從低位向高位移動1位的方式(即booth比編碼),變成連續(xù)相鄰3位進行編碼,每次從低位向高位移動2位的方式(比特對編碼)。先討論其原理。

一個數我們考慮從低位向高位對其進行編碼,使其變成4進制(基4)的表示形式,每兩位二進制表示一位的四進制數。

3(2'b11)比4少1,2(2'b10)比4少2。在4進制數中,2需要向前進位則需要減去2再向前進位;3需要向前進位則需要減去1再向前進位。

我們的比特對編碼就是基于上述原理來的。

下面給出比特對編碼規(guī)律,如下表和圖所示,圖為一個實例,是對1011_1111的編碼,其表示-65。比特對編碼結果為 -1 00-1,故其表示的十進制d為:

d=-4^3 -4^0= -65

cd70b9ce-0310-11ed-ba43-dac502259ad0.png

cd85bd24-0310-11ed-ba43-dac502259ad0.png

再舉個例子,比如對0001_1001進行比特對編碼,得到編碼為:

+2-2+1

故其表示的十進制計算如下:

d=2*(4^2) -2*(4^1) +4^0

=32+8+1=41

其中的乘2與乘4都可以通過移位操作來實現,這就是為什么需要這么編碼的原因。

可以看到,每相鄰三位進行編碼,其中的最低位mi-1 其實表示來自前面的進位。故當其為 001時,得到的編碼為 +1(表示4),011時最低位1表示進位,故編碼為1+1=+2。

從中可以得出,對于8位二進制數0101_0101,經過比特對編碼后,得到的是 +1 +1 +1 +1,其表示的數為:

4^3 + 4^2 + 4^1 + 4^0 =

64+16+4+1=85

此時只需要進行3次加法運算,不會存在booth編碼所存在的問題。

同時發(fā)現對于數據位寬非偶數的數,我們需要將其在最高位補填一位符號位,再進行比特對編碼。

比特對編碼(對乘數進行編碼)乘法器,需要進行的加法次數為乘數位寬的一半。

比特對編碼乘法器設計

設計思想概敘:定義位寬為DW_A+DW_B+2的product寄存器(DW_A為被乘數a的位寬,DW_B為乘數b的位寬)。當in_valid與in_ready同時為高時,將乘數b(位寬為b)加載到product的低DW_B位。然后在計算狀態(tài)下(executing),將每次加法器的輸出放到product的高位,并每個時鐘周期將product右移2位。每個時鐘周期,通過對

m={product[1:0],prd_r[1]}

(其中prd_r[1]為上一個時鐘product的第二位)進行編碼,得出本次操作是加1、加2,減1,減2,還是不用做加減法(編碼為0)(代碼中上述五種操作對應的標志信號分別為add_1,add_2,sub_1,sub_2,noneed_add)。并將加法結果每次存到product寄存器的高位。

這里有個巧妙的思想就是,每個時鐘周期通過對product右移2位,再將其高DW_A位與a或者a*2進行相加或者相減操作,正好相當于每次product不動,把a或者a*2左移2位(乘以4)。這個思想源于《Verilog HDL 高級數字設計》中的精簡寄存器時序乘法器設計。

注意,這里是有符號數乘法器,每次左移需要在高位補符號位,故左移不能簡單的用 >> 描述(>>左移默認高位填0),具體描述見代碼。

其中減法采用加上這個數的補碼的方式;通過一個計數器(cnt)來指示什么時候結束運算;其中運算控制狀態(tài)機采用《狀態(tài)機的第四種描述方式》編寫;條件選擇多采用與或方式實現。

設計Verilog如下(dff_with_en為寄存器):

module radix4_mul #(  parameter  DW_A = 16,  parameter  DW_B = 8)(   input  clk,   input  rst_n,
   input  in_valid,   output in_ready,   input  flush,
   output o_valid,   input o_ready,
   input [DW_A-1:0] a,   input [DW_B-1:0] b,
   output [DW_A+DW_B-1:0] mul_res);
//state machine for mulwire state;wire [$clog2((DW_B+1)/2):0] cnt;
wire exe_cnt_final = (cnt == (DW_B+1)/2);
wire execute_en = in_valid&in_ready;
localparam GET_DATA = 1'b0;localparam EXECUTING = 1'b1;
wire curr_get_data = (state == GET_DATA);wire curr_executing = (state == EXECUTING);
wire is_executing = curr_executing & (~exe_cnt_final);
wire nxt_get_data_en = (curr_executing & exe_cnt_final & o_ready) | flush;wire nxt_executing = curr_get_data & execute_en;
wire nxt_state = (nxt_get_data_en & GET_DATA) |            (nxt_executing & EXECUTING);
wire tran_en = nxt_get_data_en | nxt_executing;
dff_with_en #(   .DW(1))dff_state(   .clk (clk),   .rst_n (rst_n),   .enable (tran_en),   .d_in (nxt_state),   .q_out (state));
//cnt//wire [$clog2((DW_B+1)/2):0] cnt_nxt = curr_executing ? cnt+1 : 'h0;
dff_with_en #(   .DW($clog2((DW_B+1)/2)+1))dff_cnt(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (cnt_nxt),   .q_out (cnt));
//get the awire [DW_A-1:0] a_d;wire [DW_A-1:0] nxt_a_d = nxt_executing ? a : a_d;
dff_with_en #(   .DW(DW_A))dff_a(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (nxt_a_d),   .q_out (a_d));//radix 4 codingwire prd_r;wire [DW_A+DW_B+1:0] product;//wire [DW_B-1:0] b_shift;wire [2:0] m = is_executing ? {product[1:0],prd_r} : 3'b000;
wire add_1 = (m == 3'b001) | (m == 3'b010);wire add_2 = (m == 3'b011);wire sub_1 = (m == 3'b110) | (m == 3'b101);wire sub_2 = (m == 3'b100);
//wire [DW_A+DW_B+1:0] product;
wire [DW_A+1:0] adder_op1 = ( {DW_A+2{add_1}}& { {2{a_d[DW_A-1]}},a_d} )       |                      ( {DW_A+2{add_2}}& { {1{a_d[DW_A-1]}},a_d,1'b0} )  |          ( {DW_A+2{sub_1}}& (~{ {2{a_d[DW_A-1]}},a_d}) )    |          ( {DW_A+2{sub_2}}& (~{ {1{a_d[DW_A-1]}},a_d,1'b0}));
wire add_en = (add_1 | add_2 | sub_1 | sub_2)& is_executing;       wire noneed_add = is_executing & (~(add_1 | add_2 | sub_1 | sub_2));
wire [DW_A+1:0] adder_op2 = product[DW_A+DW_B+1:DW_B];
wire adder_cin = sub_1|sub_2;
wire [DW_A+1:0] adder_res = adder_op1 + adder_op2 + adder_cin;
wire [DW_A+DW_B+1:0] nxt_product = ({DW_A+DW_B+2{add_en}} &{{2{adder_res[DW_A+1]}},adder_res,product[DW_B-1:2]})|                              ({DW_A+DW_B+2{noneed_add}} & {{2{product[DW_A+DW_B+1]}},product[DW_A+DW_B+1:2]}) |           ({DW_A+DW_B+2{o_valid}} & product) |           ({DW_A+DW_B+2{nxt_executing}} & {{DW_A+2{1'b0}},b});
dff_with_en #(   .DW(DW_A+DW_B+2))dff_product(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (nxt_product),   .q_out (product));
wire prd_nxt = curr_get_data ? 1'b0 : product[1];
dff_with_en #(   .DW(1))dff_prd(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (prd_nxt),   .q_out (prd_r));assign in_ready = curr_get_data;assign o_valid = exe_cnt_final;assign mul_res = product[DW_A+DW_B-1:0];
endmodule

如果乘數b位寬為奇數,請補一位符號位,變成偶數位寬,再輸入。

原文標題:比特對編碼與比特對編碼乘法器的設計

文章出處:【微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。

審核編輯:彭靜

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 編碼
    +關注

    關注

    6

    文章

    1035

    瀏覽量

    56842
  • 比特
    +關注

    關注

    0

    文章

    16

    瀏覽量

    10760
  • 乘法器
    +關注

    關注

    9

    文章

    221

    瀏覽量

    38688
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    Vishay USB編碼器接口技術解析與應用指南

    Vishay/MCB Industrie RAMK/RAME USB編碼器接口是一款設計用于Vishay MCB編碼器(AMK和RAME系列,包括霍爾效應)的電子板。該接口板只需使用隨附的USB
    的頭像 發(fā)表于 11-12 11:51 ?691次閱讀

    舵機伺服編碼

    舵機伺服編碼器是用于實時檢測舵機輸出軸位置、速度或角度的核心反饋元件,它能將機械運動轉化為電信號,讓控制系統實現對舵機的精準閉環(huán)控制。 這個問題切得很準,它直接指向了舵機 “精準控制” 的關鍵所在
    的頭像 發(fā)表于 10-30 10:05 ?250次閱讀

    Bourns發(fā)布全新增量式微型編碼

    Bourns 推出 PEC04 系列 4 mm 增量式微型編碼器、PEC05 PEC05 系列 5 mm 增量式微型編碼器,以及 PEC06 型號 6 mm 增量式微型編碼器。Bourns 全新微型
    的頭像 發(fā)表于 09-22 16:05 ?1228次閱讀

    《精準量子比特控制和讀取》白皮書

    在上篇客戶案例中,我們分享了德國馬普高分子研究所團隊如何利用NV色心構建高靈敏度的磁力計,案例展示了量子比特相干穩(wěn)定性在實驗中的關鍵作用。要進一步加深理解量子比特的基本與控制方法,我們推薦您閱讀
    的頭像 發(fā)表于 08-21 17:23 ?534次閱讀
    《精準量子<b class='flag-5'>比特</b>控制和讀取》白皮書

    絕對值編碼器與增量式編碼器相比有哪些優(yōu)勢?

    絕對值編碼器與增量式編碼器相比有哪些優(yōu)勢?核心功能:斷電后位置信息不丟失,絕對值編碼器:通過機械結構或電子存儲(如電池備份),能實時輸出當前位置的唯一絕對值編碼(如二進制、格雷碼)。無
    的頭像 發(fā)表于 08-11 13:57 ?1503次閱讀
    絕對值<b class='flag-5'>編碼</b>器與增量式<b class='flag-5'>編碼</b>器相比有哪些優(yōu)勢?

    增量型編碼器與絕對值型編碼器怎么選擇?

    在選擇增量型編碼器與絕對值型編碼器時,需要考慮多個因素,包括應用需求、成本、精度、可靠性以及環(huán)境適應性等。以下是對兩種編碼器的詳細比較及選擇建議: 一、增量型編碼器 1. 優(yōu)點: ?
    的頭像 發(fā)表于 07-10 10:34 ?1213次閱讀

    全球首個!低溫下可精準控制“百萬量級量子比特”芯片問世

    發(fā)表于《自然》期刊,為實用化量子計算機的構建開辟了新路徑。 ? 研究團隊研制的新型芯片基于自旋量子比特技術,通過操控單個電子的磁方向編碼信息。這一技術路線具有兩大核心優(yōu)勢:一是自旋量子比特與主流CMOS半導體工藝兼容,易于
    的頭像 發(fā)表于 07-07 05:58 ?3302次閱讀

    一文讀懂什么是磁性編碼

    磁性編碼器是一種用于測量角度和線性位置的傳感器。它使用磁性信號來監(jiān)測旋轉或線性位置的變化,并把這些變化轉換成數字信號。磁性編碼器可用于各種應用中,比如機器人、汽車、數控機床等領域
    的頭像 發(fā)表于 04-27 17:18 ?930次閱讀

    優(yōu)先編碼器:高效數據選擇與編碼的解決方案

    在現代數字電路設計中,數據的選擇與編碼是不可或缺的重要環(huán)節(jié)。面對眾多輸入信號,如何高效地選擇并編碼所需數據,成為設計師們面臨的一大挑戰(zhàn)。優(yōu)先編碼器,作為一種獨特的數字電路組件,憑借其高效、靈活的特點
    的頭像 發(fā)表于 03-25 08:33 ?1082次閱讀

    編碼器與無軸承編碼器,到底如何選擇?

    在選擇軸編碼器與無軸承編碼器時,需要根據具體的應用場景、性能需求、環(huán)境條件和成本預算等因素進行綜合考慮。以下是對兩者的詳細對比,以幫助做出合適的選擇: 一、工作原理與結構 1. 軸編碼
    的頭像 發(fā)表于 03-11 15:33 ?1183次閱讀
    軸<b class='flag-5'>編碼</b>器與無軸承<b class='flag-5'>編碼</b>器,到底如何選擇?

    伺服電機編碼器怎么選型

    伺服電機編碼器的選型是一個綜合性的過程,需要考慮多個因素以確保所選編碼器能夠滿足系統的性能要求。以下是一些關鍵的選型步驟和考慮因素: 一、明確應用需求 首先,需要明確伺服電機編碼器的應用需求,包括
    的頭像 發(fā)表于 03-11 12:01 ?1869次閱讀
    伺服電機<b class='flag-5'>編碼</b>器怎么選型

    DISCOAA編碼器性質特點

    DISCOAA編碼器的具體詳細資料或參數 ?。不過,我們可以根據編碼器的通用知識和一些相關信息來概述編碼器的一般特點和類型。 編碼器通常用于將機械運動或位置轉換為電信號,以便進行監(jiān)測、
    的頭像 發(fā)表于 02-20 13:50 ?751次閱讀

    DISCOAA編碼器維修

    DISCOAA編碼器維修主要包括故障診斷、維修準備、維修步驟及注意事項等方面?。 在進行DISCOAA編碼器維修時,首先需要了解常見的故障類型,如信號輸出異常、機械損壞、電氣連接問題等?1。這些故障
    的頭像 發(fā)表于 02-20 13:48 ?971次閱讀

    DISCOAA編碼器類型功能

    DISCOAA編碼器可能包括絕對編碼器和增量編碼器兩種類型,其主要功能是將輸入信號進行分析和處理,并將其轉換為數字信號 ?。 關于類型,雖然搜索結果中并未直接提及DISCOAA編碼器的
    的頭像 發(fā)表于 02-20 13:47 ?754次閱讀

    如何提升音頻音質?比特率和采樣率是關鍵!

    在挑選音響、聲卡、耳機等音頻設備時,我們都會特別關注其音質表現——這關乎到我們聆聽音樂、觀看電影等娛樂體驗的質量。實際上,我們可以在音頻設備中看到一些名詞標注:比特率、采樣率……這兩個可是影響音
    的頭像 發(fā)表于 02-05 17:26 ?6059次閱讀
    如何提升音頻音質?<b class='flag-5'>比特</b>率和采樣率是關鍵!