chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

小鵬汽車新一代感知架構XNet信息解讀

jf_C6sANWk1 ? 來源:阿寶1990 ? 2023-07-04 09:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在剛剛過去的CVPR會議上,作為國內唯一一家被邀請登臺演講的造車新勢力,小鵬汽車向參會者介紹了小鵬汽車在國內量產輔助駕駛系統(tǒng)的經驗。

作為小鵬汽車最新一代的感知架構,XNet在量產中發(fā)揮的作用不容小覷。

筆者有幸采訪到小鵬汽車自動駕駛中心感知首席工程師 Patrick,更進一步得了解XNet的性能、架構,以及小鵬的自駕團隊為搭建XNet所做的努力。

1.XNet實現(xiàn)的性能提升

XNet實現(xiàn)了感知結構的升級,擁有更好的性能,主要包括3個方面。

1.1超強環(huán)境感知能力,實時生成“高精地圖”

d5e913a4-1a06-11ee-962d-dac502259ad0.png

XNet可以根據周圍環(huán)境實時構建“高精地圖”。從上圖我們可以看到,車輛正在經過一個環(huán)島,圖中顯示的車道線不是來自于高精地圖,而是來自于XNet的感知輸出。XNet不光可以輸出車道線,還有停止線、人行道、可行駛區(qū)域等。這是將來小鵬汽車應對無圖場景,做高級別城市輔助駕駛的最核心的能力之一。

1.2更強的360度感知,博弈更強、變道成功率更高

在上一代感知架構中,盲區(qū)問題很難解決。在最靠近本車的地方,尤其是車輛的下邊界,感知系統(tǒng)的檢測效果往往不好。XNet采用多相機多幀、前融合的感知方案,可以根據圖像內的車身信息推測車輛在BEV視角下的3D位置信息,解決了相機上下視野受限的問題;還可以更加有效地同時融合多相機的信息,尤其是分節(jié)到兩個相機視野中的物體,從而避免盲人摸象式的物體感知。

另外,輸入包含時序信息的視頻流后,XNet對近車物體的識別能力有大幅提升,可以更加穩(wěn)定地檢測到近車物體。那么,自動駕駛系統(tǒng)的博弈能力就更強,汽車變道的成功率更高。

1.3更精準識別動態(tài)物體速度和意圖,博弈能力大幅提升;運動感知冗余,在城市場景安全性更高

XNet不僅能夠檢測物體的位置,還能夠檢測物體的速度甚至是完成對物體未來運動軌跡的預測。毫米波雷達通常很難檢測在本車前橫跨車道的車輛的速度,而XNet可以很容易地檢測到這個速度,對毫米波雷達有明顯的增強作用。在毫米波雷達比較擅長的場景,XNet也可以提供冗余,從而提高城市場景整體的安全度。

2.XNet的架構

XNet為什么可以實現(xiàn)更好的性能呢?Patrick介紹了XNet的具體架構和工作流程。

XNet采用多相機多幀的方式,把來自每一個相機的視頻流,直接注入到一個大模型的深度學習網絡里,進行多幀時序前融合,輸出BEV視角下的動態(tài)目標物的4D信息(如車輛,二輪車等的大小、距離、位置及速度、行為預測等),以及靜態(tài)目標物的3D信息(如車道線和馬路邊緣的位置)。

如下圖所示。

d65525d0-1a06-11ee-962d-dac502259ad0.png

每張輸入的攝像頭圖像經過網絡骨干(backbone)和網絡頸部(neck,具體來講是BiFPN網絡)后生成圖像空間的多尺度特征圖。

這些特征圖經過XNet最關鍵的部分—BEV視圖轉換器(BEV view transformer)后,形成BEV下的單幀特征圖。

不同時刻的單幀特征圖在BEV視角下,根據自車的位姿進行時空融合,形成BEV下的時空特征圖。

這些時空特征圖是進行BEV解碼推理的基礎,在時空特征圖后接兩個解碼器,完成動態(tài)XNet和靜態(tài)XNet的結果解碼和輸出。動態(tài)結果包括pose、size、velocity等,靜態(tài)結果包括boundary、mark line等。

至此,感知部分基本就完成了。

3.團隊為搭建XNet所做的努力

要實現(xiàn)上述架構并不容易,在采集、標注、訓練、部署四個方面,小鵬的自駕團隊都做了大量的工作來優(yōu)化整個流程。

3.1采集

實車數據和仿真數據是數據的兩大來源。

小鵬有接近十萬輛用戶車,這些車都可以用來完成數據采集的任務。如下圖所示,車端模型會報告自動駕駛系統(tǒng)目前處理得不夠好的問題,針對這些問題,小鵬的自駕團隊會在車端設置相應的觸發(fā)器來定向采集相應的數據。然后,這些數據會被上傳到云端,經過篩選和標注后用于模型訓練和后續(xù)的OTA升級。

d6710c28-1a06-11ee-962d-dac502259ad0.png

此外,仿真數據也是數據的重要來源。吳新宙在1024科技日上舉了一個例子—行車過程中,前面一輛大卡車因為輪胎脫落與地面摩擦起火,這種情形在實際生活中是極為罕見的。對于這樣出現(xiàn)頻率極低的情形,實車采集很困難,即使小鵬已經有了近十萬輛量產車,收集到足夠多的數據可能也需要數年時間。

對于這樣的情形,仿真數據可以起到很好的輔助作用。如下圖所示,小鵬的自駕團隊可以根據實車數據,采用unreal5引擎產生成千上萬個類似的case ,模擬各種各樣車輪脫落的情形。

d6af8052-1a06-11ee-962d-dac502259ad0.png

當然,仿真數據不能濫用,需要盡可能地貼近現(xiàn)實。小鵬的自駕團隊主要從光影真實和場景真實兩方面來盡量保證仿真數據的真實性。

小鵬的自駕團隊采用了技術上領先的unreal5作為渲染引擎,這樣通過仿真生成的圖片看起來比較真實,沒有卡通感,保證了“光影真實”。

此外,生成仿真數據時,是先找到模型的弱勢場景,然后對這些場景做數字孿生(digital twin),再在此基礎上進行定向修改。具體來說,可以先用4D自動標注從真實場景里提取4D結構化信息—包括動態(tài)物體的4D軌跡、和靜態(tài)場景的3D布局等,然后用渲染引擎對結構化信息進行渲染填充,形成仿真圖片。這樣,生成的場景就是在模擬真實世界可能發(fā)生的場景,保證了“場景真實”。

3.2標注

要訓練XNet,需要50萬到100萬個短視頻,其中的動態(tài)目標的數量可能是數億級甚至十億級的。按照當前人工標注的效率,需要1000人的團隊花兩年時間才能完成訓練XNet所需數據的標注。

小鵬汽車打造了全自動標注系統(tǒng),此系統(tǒng)的標注效率是人工的近45000倍,全自動標注系統(tǒng)僅需16.7天就可以完成標注工作。此外,全自動標注系統(tǒng)質量更高,信息更全(包含3D位置、尺寸、速度、軌跡等信息),產量更大(峰值日產 30000 clips,相當于 15個NuScene數據集 )。

全自動標注系統(tǒng)是如何做到高效的呢?

首先,從人工標注到自動標注,人的角色發(fā)生了很大的變化。人工標注場景下,人是標注員;在自動標注場景下,人是質檢員,只是去判別和糾正自動標注系統(tǒng)做的不好的地方,人效會有數量級的提升。

其次,在自動標注場景下,占數據集大多數的訓練數據是自動化質檢的,只有評測數據集是人工質檢,需要人工操作的數據量有數量級的減少。

最后,自動標注讓產出瓶頸從人力資源轉到了計算資源。在云端,計算資源可以很方便地拓展,可以靈活地按需部署大量資源進行生產。

3.3訓練

小鵬與阿里云合作打造了中國最大的自動駕駛計算中心—“扶搖”,“扶搖”的算力可達600PFLOPS,相當于成千上萬個Orin組成的訓練平臺。借助扶搖的強大算力,小鵬的自駕團隊采用云端大規(guī)模多機訓練的方式,把XNet的訓練時間從276天縮短到了11個小時,實現(xiàn)了602倍的訓練效率的提升。

如下圖所示,假如采用單機全精度方式,訓練整個XNet需要276天。小鵬的自駕團隊通過優(yōu)化訓練scheme從而減少epoch、優(yōu)化網絡結構和算子、為Transformer定制混合精度訓練的方式,將單機訓練時間從276天縮短到了32天。然后,團隊充分利用云端算力,將單機訓練改為80機并行訓練,訓練時間從32天縮短到了11小時。

d6c87954-1a06-11ee-962d-dac502259ad0.png

此外,團隊引入了Golden Backbone模型,將基礎網絡能力的提升和模型的發(fā)布解耦,實現(xiàn)了訓練效率的提升。具體來說,如下圖所示,Golden Backbone可以和數據挖掘、自動標注、自動駕駛超算平臺等形成一個閉環(huán)。在這個環(huán)里,只要有持續(xù)的數據輸入,Golden Backbone的能力就可以持續(xù)地得到優(yōu)化。需要發(fā)布模型的時候,只需在Golden Backbone的基礎上做一些優(yōu)化,而無需從頭開始訓練。

d6e7b562-1a06-11ee-962d-dac502259ad0.png

3.4部署

在部署層面,小鵬的自駕團隊有很多積累。經過團隊優(yōu)化后,Transformer的運算時間減少到了原來的5%。此外,原本需要122%的Orin-X算力才能運行的模型,現(xiàn)在只需9%的Orin-X算力就能運行。

在部署上,小鵬的自駕團隊有哪些亮點呢?根據Patrick的介紹,主要是分三步走。

“首先是Transformers層的重寫。經過對模型板端運行時間的分析,我們發(fā)現(xiàn)原版的Transformers層占用時長是大頭。于是,我們嘗試了很多種Transformers的變種構建方法,找到了一個模型效果好,在板端運行快的版本?!?/p>

“然后是網絡骨干的剪枝。我們重寫了Transformers以后發(fā)現(xiàn),網絡骨干(backbone)是我們的性能瓶頸。于是我們對網絡骨干進行了剪枝,降低了骨干部分的運行時間?!?/p>

“最后是多硬件的協(xié)同調度。在我們的基于Orin-X的計算平臺上,有三種計算單元—GPU、DLA還有CPU。這三種硬件對網絡的不同算子的支持度各有不同。我們把網絡的不同構件放到最適合它運行的地方,然后統(tǒng)一調度三種計算硬件,讓三者協(xié)同完成網絡推理?!?/p>

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 駕駛系統(tǒng)

    關注

    0

    文章

    22

    瀏覽量

    6728
  • 小鵬汽車
    +關注

    關注

    4

    文章

    581

    瀏覽量

    15476
  • 高精地圖
    +關注

    關注

    0

    文章

    27

    瀏覽量

    2825

原文標題:小鵬汽車新一代感知架構XNet信息解讀

文章出處:【微信號:阿寶1990,微信公眾號:阿寶1990】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    新一代高效電機技術—PCB電機

    純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:新一代高效電機技術—PCB電機.pdf 內容有幫助可以關注、點贊、評論支持下,謝謝! 【免責聲明】本文系網絡轉載,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請第
    發(fā)表于 07-17 14:35

    恩智浦與長城汽車深化合作,圍繞電氣化、下一代電子電氣架構

    、車載網絡等領域建立了聯(lián)合創(chuàng)新實驗室,并聚焦新一代電子電氣架構的共同研發(fā)和定義。當前,“軟件定義汽車”成為汽車行業(yè)發(fā)展共識,AI的快速演進則將行業(yè)帶入了新的拐點,整車電子電氣
    的頭像 發(fā)表于 07-04 10:50 ?988次閱讀

    汽車行到訪中汽中心

    近日,廣州小汽車科技集團有限公司(以下簡稱“小汽車”)技術中心總經理余行到訪中汽中心,與
    的頭像 發(fā)表于 05-20 16:20 ?368次閱讀

    新一代S32K5 MCU系列發(fā)布,助力汽車制造商向軟件定義汽車(SDV)過渡

    新一代MCU可以滿足各種區(qū)域控制架構和電氣化系統(tǒng)需求,助力汽車制造商向軟件定義汽車(SDV)過渡將出色的高運算性能與嵌入式MRAM內存相結合,在實現(xiàn)多個ECU整合的同時,不影響低延遲
    的頭像 發(fā)表于 03-14 09:45 ?1550次閱讀

    寶馬發(fā)布全新一代智能電子電氣架構

    "超級大腦"賦能寶馬新世代車型智能駕駛樂趣 全新一代電子電氣架構搭載新世代車型,覆蓋全動力系統(tǒng)和全細分車型 全新一代電子電氣架構集成算力提升20倍,支持AI用戶體驗和場景 全
    的頭像 發(fā)表于 03-13 15:42 ?312次閱讀

    圖靈AI芯片深度解讀

    和飛行汽車三大領域,成為小AI生態(tài)的硬件基石。這布局體現(xiàn)了小從單智能汽車制造商向“AI出
    的頭像 發(fā)表于 03-12 12:14 ?3419次閱讀
    小<b class='flag-5'>鵬</b>圖靈AI芯片深度<b class='flag-5'>解讀</b>

    汽車與華為深化合作,共推新品

    近日,小汽車副總裁在微博上以“托馬斯電火車”的昵稱透露了個重要信息:小汽車與華為將展開深入
    的頭像 發(fā)表于 02-13 09:39 ?1066次閱讀

    小米汽車與小汽車攜手,共建充電補能網絡

    近日,小米汽車宣布了項重大合作,正式與小汽車建立了充電補能網絡合作關系。這合作將為小米汽車
    的頭像 發(fā)表于 12-26 10:44 ?738次閱讀

    芯原發(fā)布新一代Vitality架構GPU IP系列

    芯原股份近日宣布,正式推出全新Vitality架構的圖形處理器(GPU)IP系列。這一新一代GPU架構以其卓越的計算性能和廣泛的應用領域,吸引了業(yè)界的廣泛關注。 Vitality GPU架構
    的頭像 發(fā)表于 12-24 10:55 ?931次閱讀

    汽車歐洲第10000輛交付

    汽車在德國埃伯斯貝格完成了歐洲第10000輛的交付,德國家硬件科技公司的CEO——Ekkehard先生,成為了小G6的新車主,以及小
    的頭像 發(fā)表于 12-23 16:31 ?634次閱讀

    政策解讀 | 加快新一代信息技術全方位全鏈條應用

    制造業(yè)是國家經濟的命脈所系,加快制造業(yè)數字化轉型是構建現(xiàn)代化經濟體系、實現(xiàn)經濟高質量發(fā)展的必然要求。當前,以人工智能、移動通信、物聯(lián)網等為代表的新一代信息技術加速突破應用,向經濟社會方方面面廣泛滲透、深度融合,不僅成為推動經濟高質量發(fā)展的動力源,也是決定產業(yè)國際競爭力的關
    的頭像 發(fā)表于 11-09 01:09 ?587次閱讀
    政策<b class='flag-5'>解讀</b> | 加快<b class='flag-5'>新一代</b><b class='flag-5'>信息</b>技術全方位全鏈條應用

    汽車申請IRONMAN商標

    汽車最新商標動態(tài)引發(fā)關注。據天眼查知識產權信息透露,廣東小汽車科技有限公司近日已正式申請注冊“XPENG IRONMAN”、“Iron
    的頭像 發(fā)表于 09-05 17:14 ?873次閱讀

    P7+將于第四季度發(fā)布

    汽車董事長何小在最新財報電話會上宣布了項重要消息:小汽車將于今年第四季度隆重推出
    的頭像 發(fā)表于 08-27 15:52 ?515次閱讀

    汽車與大眾汽車深化合作,共繪電子電氣架構新篇章

    7月22日,小汽車在香港交易所發(fā)布重大合作公告,正式宣告與全球汽車巨頭大眾汽車集團攜手邁入全新合作階段,雙方簽署了關于電子電氣架構技術的戰(zhàn)
    的頭像 發(fā)表于 07-22 15:53 ?1116次閱讀

    汽車與大眾汽車達成電子電氣架構技術戰(zhàn)略合作

    汽車與大眾汽車集團共同宣布,繼小汽車日期為2024年4月17日有關小
    的頭像 發(fā)表于 07-22 09:49 ?1262次閱讀