chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

離子液體基電解液在非水系和水系金屬電池中的研究進展

清新電源 ? 來源:水系儲能 ? 2023-08-17 09:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

綜述背景

因其高能量密度,非水系鋰金屬電池(LMBs)和水系鋅金屬電池(ZMBs)有望成為下一代二次離子電池。選擇合適的電解液對于解決LMBs/ZMBs可能遇到的安全問題至關重要。ILs具有不易燃、熱穩(wěn)定性好、電化學窗口寬等特點,廣泛應用于二次金屬電池中。本文綜述了ILs基電解液在非水系和水系金屬電池中的研究進展。我們特別關注ILs基電解液在穩(wěn)定電解液/金屬負極界面上的電化學功能和表現(xiàn),如抑制枝晶生長,防止副反應和提升電化學性能。希望本文的研究能夠?qū)ο乱淮撬岛退到饘匐姵刂蠭Ls基電解液的發(fā)展有所啟示。

本文以題為”Recentprogress in ionic liquid-based electrolytes for nonaqueous and aqueous metalbatteries”在eScience上發(fā)表。本文第一作者為北京化工大學博士生吳欣和戴姚,通訊作者為北京化工大學陳曉春教授和于樂教授,通訊單位為北京化工大學。

研究亮點

介紹了離子液體(ILs)在非水系和水系金屬電池中的功能。

歸納了ILs在Li/Zn金屬電池中的應用。

概述了ILs的特性和分類。

分析了ILs在非水系電解液和水系電解液中的作用。

ac4d6a0e-3c89-11ee-ac96-dac502259ad0.png

圖文導讀

1. ILs的分類.

ada7a432-3c89-11ee-ac96-dac502259ad0.png

▲根據(jù)陽離子類型,ILs可以分為三大類:非質(zhì)子型、質(zhì)子型和金屬離子型。非質(zhì)子型ILs是由有機化合物與烷基鹵化物之間的烷基陽離子反應生成的。質(zhì)子ILs是由質(zhì)子轉(zhuǎn)移反應產(chǎn)生的,與非質(zhì)子ILs具有相似的特征。金屬離子型ILs是由金屬離子與有機化合物或無機鹽反應形成。此外,IL單體還可以聚合成聚離子液體(PILs)。根據(jù)聚合物骨架結構,可將PILs分為:聚陽離子型(PCILs)、聚陰離子型(PAILs)和聚兩性離子型(PZILs)。PILs同時具有離子液體單體和聚合物的特性,如柔韌性,寬的電化學窗口,凝膠狀或固態(tài)。

2. ILs具有形成穩(wěn)定SEI、促進鋰離子傳導的功能.

addde63c-3c89-11ee-ac96-dac502259ad0.png

a) LMBs中的陰陽離子協(xié)同調(diào)控示意圖;b) 25 °C下,不同配比的離子液體電解液的Li||Li對稱電池的Nyquist圖;c)電極的7Li 核磁共振數(shù)據(jù);d) LMBs在循環(huán)不同圈數(shù)后的XPS譜圖:C 1s、N 1s 和S 2p。

▲ILs基電解液中1-芐基-3-甲基咪唑(Bzmim+)陽離子具有較大的空間位阻,可以促進鋰離子在原位生成的SEI中的遷移,1-乙基-3-甲基咪唑(Emim+)陽離子具有較高的電導率,可以促進鋰離子在液體電解液中的遷移;同時ILs基電解液中的陰離子(FSI-)和雙(三氟甲基磺酰)酰亞胺(TFSI-)的結合能夠促進生成穩(wěn)定的富LiF的SEI層。通過優(yōu)化混合離子液體的配比,在保持穩(wěn)健的SEI基礎上,提高了鋰離子傳導。

圖3. ILs的不易燃性.

adfe18e4-3c89-11ee-ac96-dac502259ad0.png

a) 稀釋的IL(DIL),高濃度的IL(CIL), 和局部高濃的IL(LCIL)的溶液結構示意圖;b) 分別經(jīng)過不同電解液浸泡的玻璃纖維的燃燒測試;c) 分別經(jīng)過CIL、LCIL和碳酸鹽混合CIL浸潤制備LiCoO2電極的DSC曲線。

▲ILs具有不易燃性。HochunLee及其同事通過阻燃性能測試評估電解液的安全性,發(fā)現(xiàn)經(jīng)過ILs浸泡之后的玻璃纖維在火焰中可持續(xù)10秒都無法燃燒。與局部高濃度離子液體接觸的LiCoO2正極也表現(xiàn)出較高的熱穩(wěn)定性。此外,差示掃描量熱測試(DSC)顯示出最小的放熱,說明經(jīng)過局部高濃度離子液體浸泡后的LiCoO2電極具有延遲起始/峰值溫度的作用。

圖4. ILs具有抑制析氫功能.

ae096834-3c89-11ee-ac96-dac502259ad0.png

a) 溶劑化結構變化示意圖;b) Zn沉積形貌示意圖;c) 分子模擬示意圖;d) 自由能變化;e) ILG生成示意圖;f) 鍍有/未鍍有ILG的鋅對稱電池的恒流放電曲線;g) Ti和ILG-Ti的CE圖;h) Zn和ILG-Zn的產(chǎn)氫曲線圖。

▲ILs可通過破壞溶劑化結構(Zn(H2O)62+)或聚合形成疏水保護層,能夠抑制析氫反應(HER)。在水系電解液中添加[EMIM]Cl,可使Zn2+配位環(huán)境由陽離子型結構(Zn(H2O)62+)轉(zhuǎn)變?yōu)殛庪x子型結構(ZnCl42-),且陰離子型結構-水的相互作用可有效抑制HER的發(fā)生。此外,由ILs單體聚合形成疏水的ILG層可通過阻止鋅金屬電極與水直接接觸,從而抑制HER的發(fā)生。擁有ILG保護的Zn電極(ILG-Zn)表現(xiàn)出優(yōu)異的耐水性,在擱置七天后仍具有93%的高容量保持率,并且其對稱電池幾乎無氫氣產(chǎn)生。

5. ILs具有抑制枝晶生長的功能.

ae4b6d38-3c89-11ee-ac96-dac502259ad0.png

a) 鍍鋅的PZIL-Zn和PZIL結構示意圖;b) Zn與PZIL上不同基團的結合能;c, d) 純Zn和PZIL-Zn上鋅沉積的示意圖;e) Zn和PZIL-Zn的循環(huán)性能表現(xiàn);f) PZIL-Zn循環(huán)后的SEM圖;g)Zn循環(huán)后的SEM圖;h) Zn和PZIL-Zn循環(huán)后的XRD譜圖。

▲ILs可聚合形成堅固的SEI保護層,能夠有效控制鋅負極表面的枝晶形成和生長。雙功能化聚兩性離子液體(PZIL)層有助于鋅離子均勻分布于鋅金屬表面,從而防止鋅枝晶生長。密度泛函理論(DFT)計算表明,PZIL與Zn2+離子結合能遠高于Zn和H2O的結合,有利于Zn-H2O的去溶劑化過程,并且PZIL可以阻礙電解液與鋅電極直接接觸,從而預防了鋅金屬腐蝕問題。同時,PZIL擁有豐富的親鋅基團,可促進Zn2+的脫溶劑化,實現(xiàn)穩(wěn)定的離子遷移。結果顯示,與循環(huán)性能差且大量枝晶產(chǎn)生的純鋅電極相比,PZIL-Zn對稱電池在2600 h內(nèi)表現(xiàn)出高循環(huán)穩(wěn)定性,且鋅電極表面仍保持著光滑平整的形貌。

6.ILs具有拓展電解液穩(wěn)定溫域的功能.

ae62d734-3c89-11ee-ac96-dac502259ad0.png

a) 計算Zn2+在SIP聚合物界面的去溶劑化和離子遷移過程中的結合能;b) 離子電導率;c) Zn2+離子遷移數(shù);d) Zn、Zn@PAN和Zn@SIP的Arrhenius曲線和活化能比較;e) Zn和Zn@SIP對稱電池在-10℃時的循環(huán)性能;f) Zn@SIP|MgVO全電池在60 °C下的循環(huán)性能。

▲ILs的添加可提高ZMBs熱穩(wěn)定性。ILs通過改變鋅離子的溶劑化結構來加速低溫時的ZMBs離子遷移動力學,并且在高溫時規(guī)整鋅沉積/剝離過程從而實現(xiàn)Zn平面沉積。結果表明,半固定化離子液體界面層(SIP)促進Zn2+-H2O的快速去溶劑化,通過強的靜電斥力加速鋅離子的擴散傳輸,從而實現(xiàn)在-35 °C到60 °C的寬溫度范圍內(nèi)提高了離子電導率和Zn2+的遷移數(shù)。Zn@SIP對稱電池在-10 ℃,0.2mA cm-2條件下實現(xiàn)了2100 h的穩(wěn)定循環(huán),同時在60 ℃下也能實現(xiàn)800 h循環(huán)。

研究總結

在這篇綜述中,我們概述了近年來ILs基電解液在LMBs/ZMBs中的應用。具體來說,ILs基電解液在LMBs中可穩(wěn)定SEI膜,加速鋰離子遷移并防止火災和爆炸;在ZMBs中,ILs可用作溶劑/添加劑來控制鋅枝晶生長,作為SEI保護層防止HER發(fā)生,并改善ZMBs在極端溫度條件下的性能。在GPEs或SPEs中,金屬離子與ILs間的強相互作用可實現(xiàn)金屬離子去溶劑化或加速金屬離子遷移的作用。除此之外,ILs的強結合能力也使其成為防副反應的保護層??偟膩碚f,ILs基電解液的高化學/電化學/熱穩(wěn)定性為進一步改善非水系和水系高能量密度金屬電池的電化學性能提供了潛在的機會。




審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 離子電池
    +關注

    關注

    0

    文章

    69

    瀏覽量

    10403
  • 電解液
    +關注

    關注

    10

    文章

    860

    瀏覽量

    23524
  • DSC
    DSC
    +關注

    關注

    3

    文章

    308

    瀏覽量

    34616
  • 電池充放電
    +關注

    關注

    1

    文章

    168

    瀏覽量

    9288
  • 鋰金屬電池
    +關注

    關注

    0

    文章

    140

    瀏覽量

    4628

原文標題:北京化工大學陳曉春/于樂教授eScience綜述:離子液體基電解液在非水系和水系金屬電池中的研究進展

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    攻克鋰電池研發(fā)痛點-電解液浸潤量化表征

    引言 電解液浸潤性是影響鋰離子電池性能的關鍵因素,直接關系到界面反應均勻性、離子傳輸效率及循環(huán)壽命。當前行業(yè)普遍存以下痛點: 材料層級:粉末/極片孔隙結構差異導致浸潤速率波動 工藝層級:輥壓、涂布等
    發(fā)表于 07-14 14:01

    接觸式位傳感器精準檢測電解液位優(yōu)選方案

    。而非接觸式位傳感器以其獨特的測量方式和諸多優(yōu)勢,電解液位檢測中得到了廣泛應用。一、接觸式
    的頭像 發(fā)表于 04-12 10:53 ?441次閱讀
    <b class='flag-5'>非</b>接觸式<b class='flag-5'>液</b>位傳感器精準檢測<b class='flag-5'>電解液</b><b class='flag-5'>液</b>位優(yōu)選方案

    接觸式位傳感器電池位檢測中的技術實踐與創(chuàng)新

    電池技術不斷發(fā)展的今天,電池的性能和安全性備受關注。其中,電池位的準確檢測對于保證
    的頭像 發(fā)表于 04-11 11:21 ?342次閱讀
    論<b class='flag-5'>非</b>接觸式<b class='flag-5'>液</b>位傳感器<b class='flag-5'>在</b><b class='flag-5'>電池</b><b class='flag-5'>液</b><b class='flag-5'>液</b>位檢測中的技術實踐與創(chuàng)新

    頗具潛力的鋅電池

    采用水系電解液,避免傳統(tǒng)鋰電池的易燃易爆風險, 因此 極端條件下仍 能保持穩(wěn)定。并且 鋅資源儲量豐富(地殼含量約0.02%),原材料成本僅為鋰電池的30%-40% 。同時 不含鉛、鎘
    的頭像 發(fā)表于 03-02 00:04 ?3421次閱讀
    頗具潛力的鋅<b class='flag-5'>基</b><b class='flag-5'>電池</b>

    水系電池金屬負極腐蝕問題綜述

    ? 研究背景 水系金屬電池(AMB)直接采用金屬作為負極(如Zn、Al、Mg等),不僅在大規(guī)模儲能領域,
    的頭像 發(fā)表于 02-18 14:37 ?742次閱讀
    <b class='flag-5'>水系</b><b class='flag-5'>電池</b><b class='flag-5'>金屬</b>負極腐蝕問題綜述

    石墨烯鉛蓄電池研究進展、優(yōu)勢、挑戰(zhàn)及未來方向

    石墨烯鉛蓄電池是將石墨烯材料與傳統(tǒng)鉛酸電池技術相結合的研究方向,旨在提升鉛酸電池的性能(如能量密度、循環(huán)壽命、快充能力等)。以下是該領域的研究進展
    的頭像 發(fā)表于 02-13 09:36 ?1190次閱讀

    馬里蘭大學王春生教授團隊最新研究成果:探索水系電池電解質(zhì)設計

    2?溶劑化殼層中水的還原引起,會生成氫氣,加速Zn表面副反應;Zn沉積的均勻性則易導致枝晶生長,進而損壞電極界面。 成果簡介 基于此,馬里蘭大學王春生教授團隊提出了一種基于 Et(30) 極性參數(shù) 的水系電池
    的頭像 發(fā)表于 02-10 10:19 ?691次閱讀
    馬里蘭大學王春生教授團隊最新<b class='flag-5'>研究</b>成果:探索<b class='flag-5'>水系</b>鋅<b class='flag-5'>電池</b>的<b class='flag-5'>電解</b>質(zhì)設計

    一種高能量密度水系有機液流電池

    多電子轉(zhuǎn)移分子提高水系有機液流電池(AOFBs)的能量密度和降低成本方面具有巨大潛力。然而,用于增加氧化還原活性位點和穩(wěn)定多電子反應所需的擴展共軛單元總會降低分子極性,從而限制其
    的頭像 發(fā)表于 02-07 14:33 ?543次閱讀
    一種高能量密度<b class='flag-5'>水系</b>有機液流<b class='flag-5'>電池</b>

    強弱耦合型電解液調(diào)控超級電容器寬溫域特性及其機制研究

    影響,特別是極端溫度( 60 °C)下。極端工作溫度下的性能衰減主要與電解液離子遷移、去溶劑化能力和電解液熱穩(wěn)定性有關。一方面,傳統(tǒng)碳酸酯類電
    的頭像 發(fā)表于 01-21 11:01 ?523次閱讀
    強弱耦合型<b class='flag-5'>電解液</b>調(diào)控超級電容器寬溫域特性及其機制<b class='flag-5'>研究</b>

    調(diào)控磷酸酯阻燃電解液離子-偶極相互作用實現(xiàn)鈉離子軟包電池安全穩(wěn)定運行

    研究背景 相較資源有限的鋰離子電池,鈉離子電池是一種極具前景的電化學儲能技術,尤其適用于大規(guī)模儲能系。然而,大多數(shù)鈉離子
    的頭像 發(fā)表于 01-06 17:41 ?860次閱讀
    調(diào)控磷酸酯<b class='flag-5'>基</b>阻燃<b class='flag-5'>電解液</b><b class='flag-5'>離子</b>-偶極相互作用實現(xiàn)鈉<b class='flag-5'>離子</b>軟包<b class='flag-5'>電池</b>安全穩(wěn)定運行

    水系電解液寬電壓窗口設計助力超長壽命水系離子電池

    研究背景】水系離子電池(ASIBs)具有高安全、低成本、快速充電等優(yōu)點,大規(guī)模儲能中顯示出巨大的潛力。然而,傳統(tǒng)的低濃度
    的頭像 發(fā)表于 12-20 10:02 ?1592次閱讀
    <b class='flag-5'>水系</b><b class='flag-5'>電解液</b>寬電壓窗口設計助力超長壽命<b class='flag-5'>水系</b>鈉<b class='flag-5'>離子</b><b class='flag-5'>電池</b>

    離子液體添加劑用于高壓無負極鋰金屬電池

    ? ? ? ?研究背景 基于雙(氟磺酰)酰亞胺鋰(LiFSI)的濃縮電解質(zhì)已被提出作為無負極鋰金屬電池(AFLMB)的有效鋰兼容
    的頭像 發(fā)表于 12-10 11:00 ?1297次閱讀
    <b class='flag-5'>離子</b><b class='flag-5'>液體</b>添加劑用于高壓無負極鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    安泰功率放大器電解液體浸潤性測試中的應用

    現(xiàn)在的電子設備上的供電電池多為可反復充放電的鋰電池,這種我們?nèi)粘I钪邪缪葜匾巧?b class='flag-5'>電池,卻有著自燃、爆炸的風險;隨著電池在生活中的普及
    的頭像 發(fā)表于 12-09 11:38 ?461次閱讀
    安泰功率放大器<b class='flag-5'>在</b><b class='flag-5'>電解液體</b>浸潤性測試中的應用

    鈉電新突破:實現(xiàn)寬溫長壽命電池電解液革新

    ?? 【研究背景】 鈉離子電池(SIBs)因其資源豐富、成本低等優(yōu)勢成為鋰離子電池的有力替代品。電解液是SIBs的“血液”,對
    的頭像 發(fā)表于 11-28 09:51 ?1399次閱讀
    鈉電新突破:實現(xiàn)寬溫長壽命<b class='flag-5'>電池</b>的<b class='flag-5'>電解液</b>革新

    武漢理工大學水系離子電池研究方面取得新進展

    武漢理工大學材料科學與工程學院傳來新突破消息,麥立強教授團隊水系離子電池研究領域取得了顯著進展
    的頭像 發(fā)表于 10-14 15:45 ?825次閱讀
    武漢理工大學<b class='flag-5'>在</b><b class='flag-5'>水系</b>鋅<b class='flag-5'>離子</b><b class='flag-5'>電池</b><b class='flag-5'>研究</b>方面取得新<b class='flag-5'>進展</b>