chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

碳化硅MOSFET器件的特性優(yōu)勢與發(fā)展瓶頸!

kus1_iawbs2016 ? 2017-12-13 09:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

引言

碳化硅功率器件近年來越來越廣泛應用于工業(yè)領域,受到大家的喜愛,不斷地推陳出新,大量的更高電壓等級、更大電流等級的產(chǎn)品相繼推出,市場反應碳化硅元器件的效果非常好,但似乎對于碳化硅元器件的普及還有很長的路要走。那為什么SiC器件這么受歡迎,但難以普及?本文簡單概述一下碳化硅器件的特性優(yōu)勢與發(fā)展瓶頸!

碳化硅mos對比硅mos的11大優(yōu)勢

1、SiC器件的結(jié)構(gòu)和特征

Si材料中,越是高耐壓器件其單位面積的導通電阻就越大(通常以耐壓值的大概2-2.5次方的比例增加),因此600V以上的電壓中主要采用IGBT(絕緣柵極雙極型晶體管)。IGBT通過電導率調(diào)制,向漂移層內(nèi)注入作為少數(shù)載流子的空穴,因此導通電阻比MOSFET還要小,但是同時由于少數(shù)載流子的積聚,在關斷時會產(chǎn)生尾電流,從而造成極大的開關損耗。

SiC器件漂移層的阻抗比Si器件低,不需要進行電導率調(diào)制就能夠以高頻器件結(jié)構(gòu)的MOSFET實現(xiàn)高耐壓和低阻抗。而且MOSFET原理上不產(chǎn)生尾電流,所以用SiC MOSFET替代IGBT時,能夠明顯地減少開關損耗,并且實現(xiàn)散熱部件的小型化。另外,SiC MOSFET能夠在IGBT不能工作的高頻條件下驅(qū)動,從而也可以實現(xiàn)被動器件的小型化。與600V~1200V的Si MOSFET相比,SiC MOSFET的優(yōu)勢在于芯片面積小(可以實現(xiàn)小型封裝),而且體二極管的恢復損耗非常小。

2、SiC Mosfet的導通電阻

SiC 的絕緣擊穿場強是Si 的10倍,所以能夠以低阻抗、薄厚度的漂移層實現(xiàn)高耐壓。因此,在相同的耐壓值的情況下,SiC 可以得到標準化導通電阻(單位面積導通電阻)更低的器件。例如900V時,SiC‐MOSFET 的芯片尺寸只需要Si‐MOSFET 的35分之1、SJ‐MOSFET 的10分之1,就可以實現(xiàn)相同的導通電阻。不僅能夠以小封裝實現(xiàn)低導通電阻,而且能夠使門極電荷量Qg、結(jié)電容也變小。目前SiC 器件能夠以很低的導通電阻輕松實現(xiàn)1700V以上的耐壓。因此,沒有必要再采用IGBT這種雙極型器件結(jié)構(gòu)(導通電阻變低,則開關速度變慢) ,就可以實現(xiàn)低導通電阻、高耐壓、快速開關等各優(yōu)點兼?zhèn)涞钠骷?/p>

3、Vd-Id特性

SiC‐MOSFET 與IGBT 不同,不存在開啟電壓,所以從小電流到大電流的寬電流范圍內(nèi)都能夠?qū)崿F(xiàn)低導通損耗。而Si MOSFET 在150℃時導通電阻上升為室溫條件下的2 倍以上,與Si MOSFET 不同,SiC MOSFET的上升率比較低,因此易于熱設計,且高溫下的導通電阻也很低。

4、驅(qū)動門極電壓和導通電阻

SiC‐MOSFET 的漂移層阻抗比Si MOSFET 低,但是另一方面,按照現(xiàn)在的技術水平,SiC MOSFET的MOS 溝道部分的遷移率比較低,所以溝道部的阻抗比Si 器件要高。因此,越高的門極電壓,可以得到越低的導通電阻(Vgs=20V 以上則逐漸飽和)。如果使用一般IGBT 和Si MOSFET 使用的驅(qū)動電壓Vgs=10~15V 的話,不能發(fā)揮出SiC 本來的低導通電阻的性能,所以為了得到充分的低導通電阻,推薦使用Vgs=18V左右進行驅(qū)動。Vgs=13V 以下的話,有可能發(fā)生熱失控,請注意不要使用。

5、Vg-Id特性

SiC MOSFET 的閾值電壓在數(shù)mA 的情況下定義的話,與Si‐MOSFET 相當,室溫下大約3V(常閉)。但是,如果流通幾個安培電流的話,需要的門極電壓在室溫下約為8V 以上,所以可以認為針對誤觸發(fā)的耐性與IGBT 相當。溫度越高,閾值電壓越低。

6、Turn-On特性

SiC‐MOSFET 的Turn‐on 速度與Si IGBT 和Si MOSFET 相當,大約幾十ns。但是在感性負載開關的情況下,由通往上臂二極管的回流產(chǎn)生的恢復電流也流過下臂,由于各二極管性能的偏差,從而產(chǎn)生很大的損耗。Si FRD 和Si MOSFET 中的體二極管的通?;謴碗娏鞣浅4螅瑫a(chǎn)生很大的損耗,而且在高溫下該損耗有進一步增大的趨勢。與此相反,SiC二極管不受溫度影響,可以快速恢復,SiC MOSFET 的體二極管雖然Vf 較高但是與碳化硅二極管相同,具有相當?shù)目焖倩謴托阅?。通過這些快速恢復性能,可以減少Turn‐on 損耗(Eon)好幾成。開關速度極大程度上決定于外部的門極電阻Rg。為了實現(xiàn)快速動作,推薦使用幾Ω左右的低阻值門極電阻。另外還需要考慮到浪涌電壓,選擇合適的門極電阻。

7、Turn-Off特性

SiC MOSFET 的最大特點是原理上不會產(chǎn)生如IGBT中經(jīng)常見到的尾電流。SiC 即使在1200V 以上的耐壓值時也可以采用快速的MOSFET 結(jié)構(gòu),所以,與IGBT 相比,Turn‐off 損耗(Eoff)可以減少約90%,有利于電路的節(jié)能和散熱設備的簡化、小型化。而且,IGBT 的尾電流會隨著溫度的升高而增大,而SiC‐MOSFET 幾乎不受溫度的影響。另外,由于較大的開關損耗引起的發(fā)熱會致使結(jié)點溫度(Tj)超過額定值,所以IGBT 通常不能在20KHz 以上的高頻區(qū)域內(nèi)使用,但SiC MOSFET 由于Eoff 很小,所以可以進行50KHz 以上的高頻開關動作。通過高頻化,可以使濾波器等被動器件小型化。

8、內(nèi)部門極電阻

芯片內(nèi)部門極電阻與門極電極材料的薄層阻抗和芯片尺寸相關。如果是相同的設計,芯片內(nèi)部門極電阻與芯片尺寸呈反比例,芯片尺寸越小,門極電阻越大。SiC MOSFET 的芯片尺寸比Si 器件小,雖然結(jié)電容更小,但是同時門極電阻也就更大。

9、門極驅(qū)動電路

SiC MOSFET 是一種易于驅(qū)動、驅(qū)動功率較少的常閉型、電壓驅(qū)動型的開關器件?;镜尿?qū)動方法和IGBT 以及Si MOSFET一樣。推薦的驅(qū)動門極電壓,ON 側(cè)時為+18V 左右,OFF 側(cè)時為0V。在要求高抗干擾性和快速開關的情況下,也可以施加‐3~‐5V 左右的負電壓。當驅(qū)動大電流器件和功率模塊時,推薦采用緩沖電路。

10、體二極管的 Vf 和逆向?qū)?/h4>

與Si MOSFET 一樣,SiC MOSFET體內(nèi)也存在因PN結(jié)而形成的體二極管(寄生二極管)。但是由于SiC的帶隙是Si的3倍,所以SiC MOSFET的PN二極管的開啟電壓大概是3V左右,比較大,而且正向壓降(Vf)也比較高。以往,當Si MOSFET外置回流用的快速二極管時,由于體二極管和外置二極管的Vf大小相等,為了防止朝向恢復慢的體二極管側(cè)回流,必須在MOSFET上串聯(lián)低電壓阻斷二極管,這樣的話,既增加了器件數(shù)量,也使導通損耗進一步惡化。然而,SiC MOSFET的體二極管的Vf 比回流用的快速二極管的Vf還要高出很多,所以當逆向并聯(lián)外置二極管時,不需要串聯(lián)低壓阻斷二極管。

體二極管的Vf比較高,這一問題可以通過如同整流一樣向門極輸入導通信號使其逆向?qū)▉斫档?。逆變?qū)動時,回流側(cè)的臂上多數(shù)是在死區(qū)時間結(jié)束之后輸入門極導通信號(請確認使用中的CPU的動作),體二極管的通電只在死區(qū)時間期間發(fā)生,之后基本上是經(jīng)由溝道逆向流過。因此,即使在只由MOSFET(無逆向并聯(lián)的SBD)構(gòu)成的橋式電路中,體二極管的Vf較高也沒有問題。

11、體二極管的恢復特性

SiC MOSFET的體二極管雖然是PN 二極管,但是少數(shù)載流子壽命較短,所以基本上沒有出現(xiàn)少數(shù)載流子的積聚效果,與SBD 一樣具有超快速恢復性能(幾十ns)。因此Si MOSFET的體二極管與IGBT外置的FRD相比,其恢復損耗可以減少到IGBT外置的FRD的幾分之一到幾十分之一。體二極管的恢復時間與SBD相同,是恒定的,不受正向輸入電流If的影響(dI/dt 恒定的情況下)。在逆變器應用中,即使只由MOSFET 構(gòu)成橋式電路,也能夠?qū)崿F(xiàn)非常小的恢復損耗,同時還預期可以減少因恢復電流而產(chǎn)生的噪音,達到降噪。

從以上這些方面就能看出SiC MOSFET相對于Si IGBT和MOSFET的優(yōu)勢所在。

碳化硅mos的發(fā)展瓶頸

綜合各種報道,難題不在芯片的原理設計,特別是芯片結(jié)構(gòu)設計解決好并不難。難在實現(xiàn)芯片結(jié)構(gòu)的制作工藝。當然對于用戶最直接的原因是,SiC MOSFET 的價格相當昂貴,限制了它的普及。

舉例如下:

1、碳化硅晶片的微管缺陷密度。微管是一種肉眼都可以看得見的宏觀缺陷,在碳化硅晶體生長技術發(fā)展到能徹底消除微管缺陷之前,大功率電力電子器件就難以用碳化硅來制造。盡管優(yōu)質(zhì)晶片的微管密度已達到不超過15cm-2 的水平。但器件制造要求直徑超過100mm的碳化硅晶體,微管密度低于0.5cm-2 。

2、外延工藝效率低。碳化硅的氣相同質(zhì)外延一般要在1500℃以上的高溫下進行。由于有升華的問題,溫度不能太高,一般不能超過1800℃,因而生長速率較低。液相外延溫度較低、速率較高,但產(chǎn)量較低。

3、摻雜工藝有特殊要求。如用擴散方法進行慘雜,碳化硅擴散溫度遠高于硅,此時掩蔽用的SiO2層已失去了掩蔽作用,而且碳化硅本身在這樣的高溫下也不穩(wěn)定,因此不宜采用擴散法摻雜,而要用離子注入摻雜。如果p型離子注入的雜質(zhì)使用鋁。由于鋁原子比碳原子大得多,注入對晶格的損傷和雜質(zhì)處于未激活狀態(tài)的情況都比較嚴重,往往要在相當高的襯底溫度下進行,并在更高的溫度下退火。這樣就帶來了晶片表面碳化硅分解、硅原子升華的問題。目前,p型離子注入的問題還比較多,從雜質(zhì)選擇到退火溫度的一系列工藝參數(shù)都還需要優(yōu)化。

4、歐姆接觸的制作。歐姆接觸是器件電極引出十分重要的一項工藝。在碳化硅晶片上制造金屬電極,要求接觸電阻低于10- 5Ωcm2,電極材料用Ni和Al可以達到,但在100℃ 以上時熱穩(wěn)定性較差。采用Al/Ni/W/Au復合電極可以把熱穩(wěn)定性提高到600℃、100h ,不過其接觸比電阻高達10- 3Ωcm2 。所以要形成好的碳化硅的歐姆接觸比較難。

5、配套材料的耐溫。碳化硅芯片可在600℃溫度下工作,但與其配套的材料就不見得能耐此高溫。例如,電極材料、焊料、外殼、絕緣材料等都限制了工作溫度的提高。

以上僅舉數(shù)例,不是全部。還有很多工藝問題還沒有理想的解決辦法,如碳化硅半導體表面挖槽工藝、終端鈍化工藝、柵氧層的界面態(tài)對碳化硅MOSFET器件的長期穩(wěn)定性影響方面,行業(yè)中還有沒有達成一致的結(jié)論等,大大阻礙了碳化硅功率器件的快速發(fā)展。

結(jié)語

借鑒各類科技發(fā)展經(jīng)驗,凡事都有一個自己的發(fā)展規(guī)律。例如晶閘管上世記五十年代在我國出現(xiàn),用于電氣控制,受到各行各業(yè)歡迎,但并不一帆風順。先是可控硅熱,后因設計原理沒有徹底搞清,產(chǎn)品故障頻發(fā),社會出現(xiàn)了“可怕硅”的恐懼。經(jīng)過努力,下定決心克服難題,迎來了晶閘管的普及使用。所以,碳化硅功率器件的發(fā)展也不可能出現(xiàn)短期的飛躍要有個過程。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    150

    文章

    8608

    瀏覽量

    220453
  • 碳化硅
    +關注

    關注

    25

    文章

    3066

    瀏覽量

    50465

原文標題:碳化硅MOSFET性能的優(yōu)勢與發(fā)展遇到的瓶頸!

文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導體技術創(chuàng)新聯(lián)盟】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    基本半導體碳化硅 MOSFET 的 Eoff 特性及其在電力電子領域的應用

    基本半導體碳化硅 MOSFET 的 Eoff 特性及其在電力電子領域的應用 一、引言 在電力電子技術飛速發(fā)展的今天,碳化硅(SiC)
    的頭像 發(fā)表于 06-10 08:38 ?210次閱讀
    基本半導體<b class='flag-5'>碳化硅</b> <b class='flag-5'>MOSFET</b> 的 Eoff <b class='flag-5'>特性</b>及其在電力電子領域的應用

    基本半導體碳化硅(SiC)MOSFET低關斷損耗(Eoff)特性的應用優(yōu)勢

    BASiC基本股份半導體的碳化硅(SiC)MOSFET憑借其低關斷損耗(Eoff)特性,在以下應用中展現(xiàn)出顯著優(yōu)勢: 傾佳電子(Changer Tech)-專業(yè)汽車連接器及功率半導體(
    的頭像 發(fā)表于 05-04 09:42 ?286次閱讀
    基本半導體<b class='flag-5'>碳化硅</b>(SiC)<b class='flag-5'>MOSFET</b>低關斷損耗(Eoff)<b class='flag-5'>特性</b>的應用<b class='flag-5'>優(yōu)勢</b>

    碳化硅功率器件的種類和優(yōu)勢

    在現(xiàn)代電子技術飛速發(fā)展的背景下,功率器件的性能和效率面臨著越來越高的要求。碳化硅(SiC)作為一種新興的寬禁帶半導體材料,憑借其優(yōu)異的電氣特性和熱性能,逐漸成為功率電子
    的頭像 發(fā)表于 04-09 18:02 ?647次閱讀

    碳化硅MOSFET優(yōu)勢有哪些

    碳化硅MOSFET不僅具有低導通電阻、高開關速度和高耐壓等顯著優(yōu)勢,還在高溫和高頻應用中展現(xiàn)出優(yōu)越的穩(wěn)定性。本文將詳細探討碳化硅MOSFET
    的頭像 發(fā)表于 02-26 11:03 ?743次閱讀

    碳化硅在半導體中的作用

    碳化硅(SiC)在半導體中扮演著至關重要的角色,其獨特的物理和化學特性使其成為制作高性能半導體器件的理想材料。以下是碳化硅在半導體中的主要作用及優(yōu)勢
    的頭像 發(fā)表于 01-23 17:09 ?1350次閱讀

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用中的首選。作為碳化硅MOSFET
    發(fā)表于 01-04 12:37

    碳化硅MOSFET柵極氧化層缺陷的檢測技術

    碳化硅材料在功率器件中的優(yōu)勢碳化硅(SiC)作為第三代化合物半導體材料,相較于傳統(tǒng)硅基器件,展現(xiàn)出了卓越的性能。SiC具有高禁帶寬度、高熱導
    的頭像 發(fā)表于 12-06 17:25 ?1456次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>柵極氧化層缺陷的檢測技術

    碳化硅的應用領域 碳化硅材料的特性優(yōu)勢

    碳化硅的應用領域 碳化硅(SiC),作為一種寬禁帶半導體材料,因其獨特的物理和化學特性,在多個領域展現(xiàn)出廣泛的應用潛力。以下是碳化硅的一些主要應用領域: 電子
    的頭像 發(fā)表于 11-29 09:27 ?5374次閱讀

    碳化硅功率器件的工作原理和應用

    碳化硅(SiC)功率器件近年來在電力電子領域取得了顯著的關注和發(fā)展。相比傳統(tǒng)的硅(Si)基功率器件,碳化硅具有許多獨特的優(yōu)點,使其在高效能、
    的頭像 發(fā)表于 09-13 11:00 ?1267次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的工作原理和應用

    碳化硅功率器件優(yōu)勢和應用領域

    在電力電子領域,碳化硅(SiC)功率器件正以其獨特的性能和優(yōu)勢,逐步成為行業(yè)的新寵。碳化硅作為一種寬禁帶半導體材料,具有高擊穿電場、高熱導率、低介電常數(shù)等特點,使得
    的頭像 發(fā)表于 09-13 10:56 ?1433次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的<b class='flag-5'>優(yōu)勢</b>和應用領域

    碳化硅功率器件的原理簡述

    隨著科技的飛速發(fā)展,電力電子領域也迎來了前所未有的變革。在這場變革中,碳化硅(SiC)功率器件憑借其獨特的性能優(yōu)勢,逐漸成為業(yè)界關注的焦點。本文將深入探討
    的頭像 發(fā)表于 09-11 10:47 ?1344次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的原理簡述

    碳化硅功率器件的優(yōu)點和應用

    碳化硅(SiliconCarbide,簡稱SiC)功率器件是近年來電力電子領域的一項革命性技術。與傳統(tǒng)的硅基功率器件相比,碳化硅功率器件在性
    的頭像 發(fā)表于 09-11 10:44 ?1153次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的優(yōu)點和應用

    碳化硅功率器件的技術優(yōu)勢

    隨著電力電子技術的飛速發(fā)展,傳統(tǒng)的硅基功率器件因其物理特性的限制,已經(jīng)逐漸難以滿足日益增長的高性能、高效率、高可靠性的應用需求。在這一背景下,碳化硅(SiC)功率
    的頭像 發(fā)表于 09-11 10:43 ?696次閱讀

    碳化硅功率器件有哪些優(yōu)勢

    碳化硅(SiC)功率器件是一種基于碳化硅半導體材料的電力電子器件,近年來在功率電子領域迅速嶄露頭角。與傳統(tǒng)的硅(Si)功率器件相比,
    的頭像 發(fā)表于 09-11 10:25 ?1167次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>有哪些<b class='flag-5'>優(yōu)勢</b>

    碳化硅功率器件優(yōu)勢和分類

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半導體器件,主要用于高頻、高溫、高壓和高功率的電子應用。相比傳統(tǒng)的硅(Si)基功率器件,
    的頭像 發(fā)表于 08-07 16:22 ?1315次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的<b class='flag-5'>優(yōu)勢</b>和分類