chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

Mini-Wifi充電寶散熱方案 | 透波絕緣氮化硼散熱膜

向欣電子 ? 2025-07-14 05:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

帶 MINI WIFI 的充電寶面臨著較為復雜的散熱問題,主要源于內(nèi)部元件發(fā)熱、散熱空間有限及信號傳輸?shù)纫蛩氐奶魬?zhàn)。

  • 充電寶在充電和放電過程中,鋰離子電池會因內(nèi)部化學反應產(chǎn)生熱量,尤其是在高功率快充模式下,電池溫度上升更快。同時,MINI WIFI 模塊工作時,其芯片等部件也會產(chǎn)生熱量。此外,充電寶內(nèi)部的電源管理芯片在高負載運行時同樣會釋放大量熱量。這些熱量疊加在一起,使得充電寶內(nèi)部溫度顯著升高。
  • 散熱空間受限帶 MINI WIFI 的充電寶通常體積較小,內(nèi)部空間緊湊,留給散熱結(jié)構(gòu)的空間有限。這導致熱量難以有效散發(fā),容易在內(nèi)部積聚,進而影響各元件的性能和壽命。
  • 熱量相互影響充電寶產(chǎn)生的熱量會影響 MINI WIFI 模塊的性能,使其信號穩(wěn)定性下降、傳輸速率變慢等。反之,MINI WIFI 模塊產(chǎn)生的熱量也會對充電寶的電池和電路產(chǎn)生影響,加速電池老化,甚至可能影響充電寶的正常充放電功能。
  • 外部環(huán)境影響散熱如果在高溫環(huán)境下使用或存放帶 MINI WIFI 的充電寶,會進一步加劇其散熱困難。例如,在陽光直射的車內(nèi)或炎熱的戶外,充電寶內(nèi)部熱量難以向外界環(huán)境傳導,溫度會持續(xù)升高,增加安全風險。
  • 散熱設計與材料不足部分廠商為控制成本,可能采用劣質(zhì)散熱材料或簡化散熱設計,如使用導熱性能差的外殼、劣質(zhì)散熱凝膠等,無法有效將內(nèi)部熱量傳導出去,導致散熱問題更加突出。

無線技術(shù)已成為現(xiàn)代生活的隱形支柱,它將設備和系統(tǒng)連接起來,創(chuàng)造出更智能的家庭、更健康的生活方式和更高效的工業(yè)。隨著對可靠、低功耗和安全連接的需求成倍增長,創(chuàng)新解決方案正在推動這場無線革命,使物聯(lián)網(wǎng)IoT)能夠改變?nèi)粘sw驗和業(yè)務運營。無線技術(shù)正在重塑我們的生活、工作以及與周圍世界互動的方式。對可靠、低功耗和安全連接的需求比以往任何時候都要高。

5G毫米波通訊技術(shù)面臨的挑戰(zhàn):兼顧散熱和信號傳輸

毫米波通信是未來無線移動通信重要發(fā)展方向之一,目前已經(jīng)在大規(guī)模天線技術(shù)、低比特量化ADC、低復雜度信道估計技術(shù)、功放非線性失真等關鍵技術(shù)上有了明顯研究進展。隨著新一代無線通信對無線寬帶通信網(wǎng)絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統(tǒng)設計面臨重大挑戰(zhàn),開展面向長距離、高移動毫米波無線寬帶系統(tǒng)的基礎理論和關鍵技術(shù)研究,已經(jīng)成為新一代寬帶移動通信最具潛力的研究方向之一。5G網(wǎng)絡比4G網(wǎng)絡的傳輸速度快10倍以上,具有傳輸速度快、穩(wěn)定、高頻傳輸技術(shù)等優(yōu)勢。

通訊電子產(chǎn)品輕薄化面臨的挑戰(zhàn):芯片高性能和散熱問題

科技的不斷發(fā)展,人們對計算機和移動設備的需求也在不斷增加,現(xiàn)在的芯片的設計都是追求高性能的,人們需要在更快的速度下完成更復雜的任務,這就需要芯片能夠提供更多的運行能力。而這種高性能的設計卻是要以付出更高的代價,例如消耗更多的電力,引起更多的熱量的產(chǎn)生。芯片的小型化和高度集成化,會導致局部熱流密度大幅上升。算力的提升、速度的提高帶來巨大的功耗和發(fā)熱量,制約高算力芯片發(fā)展的主要因素之一就是散熱能力。


高性能必須伴隨著高功率,因為能夠提供高性能的芯片必須有足夠的能源去驅(qū)動它們,并支持它們在高速運轉(zhuǎn)期間產(chǎn)生的高溫。這樣的高功率和高溫度不斷累積,讓芯片產(chǎn)生更多的熱量。新的應用程序?qū)映霾桓F,也是導致芯片越來越熱的原因之一。

晟鵬二維氮化硼低介電散熱材料

解決通訊電子領域產(chǎn)品散熱難題

1

散熱難題:二維化工藝制程技術(shù),通過定向取向讓X-Y水平方向最高可達導熱系數(shù)100W/mK(ASTM E1461)。

2

絕緣難題:膜材電擊穿強度大于 40kV(ASTM D149)。

3

透波難題:1MHz~28MHz: 介電常數(shù)小于 4.50 ,介電損耗小于 0.005 (ASTM D150)。

4

柔性輕薄化:厚度范圍 30~200um,可折彎柔韌性,超薄空間要求。

5

穩(wěn)定批量化生產(chǎn):2021年3月佛山設立工廠,開始進入量產(chǎn)化階段;2024年8月東莞大朗新工廠產(chǎn)能大幅度提升。

6

自主創(chuàng)新全球領先技術(shù)工藝材料:卷材出貨,裸膜或單面背膠。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 散熱
    +關注

    關注

    3

    文章

    569

    瀏覽量

    32859
  • 充電寶
    +關注

    關注

    7

    文章

    760

    瀏覽量

    40362
  • 氮化硼
    +關注

    關注

    0

    文章

    46

    瀏覽量

    1819
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    運動相機散熱材料方案 | 絕緣氮化硼散熱

    、專業(yè)制作等多場景的利器。運動相機使用過程中也面臨導熱散熱信號傳輸?shù)忍魬?zhàn)問題:散熱與信號干擾的矛盾為了提高散熱效果,運動相機可能會采用金屬材質(zhì)的外殼或散熱片,然而金屬
    的頭像 發(fā)表于 10-14 06:31 ?85次閱讀
    運動相機<b class='flag-5'>散熱</b>材料<b class='flag-5'>方案</b> | <b class='flag-5'>透</b><b class='flag-5'>波</b><b class='flag-5'>絕緣</b><b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    氮化硼導熱絕緣片 | 車載充電橋OBC應用

    晟鵬公司研發(fā)的氮化硼導熱絕緣片憑借其高導熱性、耐高壓及輕量化等特性,在電動汽車OBC車載充電橋IGBT模組中展現(xiàn)出關鍵應用價值。OBC的熱管理需求:OBC將電網(wǎng)交流電轉(zhuǎn)換為直流電并為電池充電
    的頭像 發(fā)表于 04-30 18:17 ?435次閱讀
    <b class='flag-5'>氮化硼</b>導熱<b class='flag-5'>絕緣</b>片 | 車載<b class='flag-5'>充電</b>橋OBC應用

    聚酰亞胺(PI)/氮化硼(BN)復合薄膜提升鋰電池絕緣散熱效果 | SPA-SPK30替代藍

    、液冷等外部散熱方式難以有效解決電池單體間的溫度梯度問題。聚酰亞胺(PI)/氮化硼(BN)納米復合薄膜為解決這一難題提供了創(chuàng)新方案。聚酰亞胺本身具有優(yōu)異的絕緣性和耐高
    的頭像 發(fā)表于 04-26 19:52 ?1281次閱讀
    聚酰亞胺(PI)/<b class='flag-5'>氮化硼</b>(BN)復合薄膜提升鋰電池<b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>效果 | SPA-SPK30替代藍<b class='flag-5'>膜</b>

    半導體芯片高導熱絕緣材料 | 晟鵬氮化硼散熱

    芯片功耗提升,散熱重要性凸顯1,芯片性能提升催生散熱需求,封裝材料市場穩(wěn)健增長AI需求驅(qū)動硬件高散熱需求。根據(jù)Canalys預測,兼容AI的個人電腦將從2025年開始快速普及,預計至2027年約占
    的頭像 發(fā)表于 04-18 06:06 ?552次閱讀
    半導體芯片高導熱<b class='flag-5'>絕緣</b><b class='flag-5'>透</b><b class='flag-5'>波</b>材料 | 晟鵬<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    “六邊形戰(zhàn)士”絕緣TIM材料 | 氮化硼

    引言:氮化硼,散熱界的“六邊形戰(zhàn)士”氮化硼材料的高導熱+強絕緣,完美適配5G射頻芯片、新能源電池、半導體封裝等高功率場景,是高性能絕緣導熱材
    的頭像 發(fā)表于 04-05 08:20 ?695次閱讀
    “六邊形戰(zhàn)士”<b class='flag-5'>絕緣</b>TIM材料 | <b class='flag-5'>氮化硼</b>

    氮化硼納米管在芯片熱界面領域?qū)嵝阅芸商嵘?0-20%,成本僅增加1-2%

    處理器散熱系統(tǒng)中,熱界面材料(TIM)至關重要,用于高效傳遞芯片與散熱器之間的熱量。傳統(tǒng)TIM材料如熱環(huán)氧和硅樹脂雖成本低,導熱性能有限。大連義邦的氮化硼納米管(BNNT)作為新型高導熱材料,具有出色的導熱性能、輕量化和電
    的頭像 發(fā)表于 04-03 13:55 ?619次閱讀
    <b class='flag-5'>氮化硼</b>納米管在芯片熱界面領域?qū)嵝阅芸商嵘?0-20%,成本僅增加1-2%

    二維氮化硼散熱 | 毫米通訊絕緣散熱材料

    5G毫米通訊技術(shù)面臨的挑戰(zhàn):兼顧散熱和信號傳輸毫米通信是未來無線移動通信重要發(fā)展方向之一,目前已經(jīng)在大規(guī)模天線技術(shù)、低比特量化ADC、低復雜度信道估計技術(shù)、功放非線性失真等關鍵技術(shù)上有了明顯
    的頭像 發(fā)表于 03-21 06:31 ?564次閱讀
    二維<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b> | 毫米<b class='flag-5'>波</b>通訊<b class='flag-5'>透</b><b class='flag-5'>波</b><b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>材料

    晟鵬技術(shù) | 氮化硼散熱提升無線充電

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發(fā)表于 02-21 06:20 ?613次閱讀
    晟鵬技術(shù) | <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>提升無線<b class='flag-5'>充電</b>

    氮化硼散熱無線充電應用 | 晟鵬技術(shù)

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發(fā)表于 02-13 08:20 ?890次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>無線<b class='flag-5'>充電</b>應用 | 晟鵬技術(shù)

    氮化硼散熱替代石墨提升無線充電效率分析

    作為散熱材料雖然有一定效果,但其性能已逐漸無法滿足更高功率和更高效能的需求。在此背景下,氮化硼(BN)散熱作為一種新型散熱材料,因其獨特的
    的頭像 發(fā)表于 02-12 06:20 ?733次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>替代石墨<b class='flag-5'>膜</b>提升無線<b class='flag-5'>充電</b>效率分析

    半導體芯片高導熱絕緣低介電氮化硼散熱 | 晟鵬技術(shù)

    芯片功耗提升,散熱重要性凸顯1,芯片性能提升催生散熱需求,封裝材料市場穩(wěn)健增長AI需求驅(qū)動硬件高散熱需求。根據(jù)Canalys預測,兼容AI的個人電腦將從2025年開始快速普及,預計至2027年約占
    的頭像 發(fā)表于 02-10 08:24 ?692次閱讀
    半導體芯片高導熱<b class='flag-5'>絕緣</b>低介電<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b> | 晟鵬技術(shù)

    氮化硼散熱 | 解決芯片絕緣散熱問題

    1、任何電氣器件及電路都不可避免地伴隨有熱量的產(chǎn)生,要提高電子產(chǎn)品的可靠性以及電性能,就必須使熱量的產(chǎn)生達到最小程度,要管理這些熱量就需要了解有關熱力學的知識并深入掌握相關的材料知識:a.溫度對電路工作的影響:升高一個有源器件的溫度通常會改變它的電學參數(shù),如增益、漏電流、失調(diào)電壓、閥電壓和正向壓降等等;改變無源元件的溫度通常會改變它們的數(shù)值;所以設計人員需要
    的頭像 發(fā)表于 01-08 06:32 ?1058次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b> | 解決芯片<b class='flag-5'>絕緣</b><b class='flag-5'>散熱</b>問題

    高導熱高絕緣低介電材料 | 氮化硼散熱

    2.27g/cm3,莫式硬度為2,具有優(yōu)良的電絕緣性、介電性能、高導熱性、耐金屬熔體腐蝕性、無明顯熔點、低熱膨脹系數(shù)。在0.1MPa的分壓下,氮化硼在中性或還原氣氛中,能
    的頭像 發(fā)表于 11-15 01:02 ?2087次閱讀
    高導熱高<b class='flag-5'>絕緣</b>低介電材料 | <b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    半導體芯片高導熱絕緣低介電材料|氮化硼散熱

    芯片功耗提升,散熱重要性凸顯1,芯片性能提升催生散熱需求,封裝材料市場穩(wěn)健增長AI需求驅(qū)動硬件高散熱需求。根據(jù)Canalys預測,兼容AI的個人電腦將從2025年開始快速普及,預計至2027年約占
    的頭像 發(fā)表于 11-09 01:03 ?1362次閱讀
    半導體芯片高導熱<b class='flag-5'>絕緣</b>低介電材料|<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>

    Die-cutting converting 精密模切加工|氮化硼散熱(白石墨烯)

    基于二維氮化硼納米片的復合薄膜,此散熱具有電磁、高導熱、高柔性、高絕緣、低介電系數(shù)、低介電
    的頭像 發(fā)表于 10-31 08:04 ?1558次閱讀
    Die-cutting converting 精密模切加工|<b class='flag-5'>氮化硼</b><b class='flag-5'>散熱</b><b class='flag-5'>膜</b>(白石墨烯)