chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

激光雷達“線”越多,自動駕駛能力就越強?

智駕最前沿 ? 來源:智駕最前沿 ? 作者:智駕最前沿 ? 2026-01-23 12:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

[首發(fā)于智駕最前沿微信公眾號]在自動駕駛的技術(shù)發(fā)展過程中,激光雷達一直被認為是核心的感知硬件,其線束數(shù)量也被視為衡量感知能力的主要指標。從早期的16線、32線,到如今量產(chǎn)車型上標配的128線、192線,乃至最新發(fā)布的512線,行業(yè)內(nèi)似乎陷入了一種“線束”競賽,似乎線束越多,就代表自動駕駛的能力越強,那事實果真如此嗎?

wKgZPGly-7OAZkMSAAAQo00DEvw656.jpg

激光雷達線束的本質(zhì)

激光雷達的線束也被稱為通道數(shù),它指的是激光雷達在垂直視場角(FOV)內(nèi)分布的激光束數(shù)量。對于傳統(tǒng)的機械旋轉(zhuǎn)式架構(gòu)或目前主流的固態(tài)激光雷達而言,線束基本等同于雷達內(nèi)部集成的激光收發(fā)模塊組數(shù)。每一個物理通道都代表了一個獨立的測距單元,隨著掃描機構(gòu)的往復或旋轉(zhuǎn)運動,這些線束在空間中可以繪制出密集的測距軌跡。線束增加帶來的最直觀紅利便是垂直角分辨率的顯著提升。所謂角分辨率,是指相鄰兩個探測點之間的角度間隔,這個間隔越小,意味著在遠距離下投射到目標物體上的激光點越密集。

wKgZO2ly-7SAFkTBAAB3TzfQ4ec546.jpg

圖片源自:網(wǎng)絡(luò)

在自動駕駛的感知任務(wù)中,由于激光束隨距離增加會發(fā)生發(fā)散,導致單位面積內(nèi)的點云密度迅速下降,因此通過激光雷達識別遠距離小目標一直是行業(yè)痛點。如果一臺16線雷達在探測150米外的一個遠端行人,可能只有零星一兩個點落在目標身上,這在后端算法眼中僅僅可能是一組無法辨識的噪聲;而當線束提升到128線甚至更高級別時,同樣的距離下可以投射出數(shù)十個甚至上百個點,從而勾勒出完整的人體輪廓或肢體動作。這種分辨率的跨越式增長,極大地降低了感知算法在處理長尾場景時的難度。實驗數(shù)據(jù)表明,在探測10厘米大小的小目標時,16線雷達的可識別距離僅為3米左右,而當?shù)刃Ь€束提升至300至600線級別時,有效識別距離可以飛躍至100米以上。

激光雷達線束 16線(傳統(tǒng)) 64線(中距) 128線(目前主流) 192線/512線(超高清)
典型垂直角分辨率 ~2.0° ~0.4° 0.1°~0.2° 0.05°~0.1°
10%反射率探測距離 50m~100m 100m~150m 180m~210m 250m~400m
每秒出點數(shù)(點頻) ~30萬 ~100萬 ~150萬 180萬~560萬
典型垂直視場角(VFOV) 30° 25°~40° 25° 20°~40°
數(shù)據(jù)傳輸帶寬需求 ~35Mbps ~130Mbps 150Mbps~300Mbps 400Mbps~800Mbps

各線束激光雷達關(guān)鍵參數(shù)對比

這種性能提升在安全冗余方面也有不可替代的價值。高線束激光雷達由于擁有更多的獨立發(fā)射和接收通道,在硬件層面具備天然的抗失效能力。像是禾賽AT128,內(nèi)部集成了128個獨立工作的激光器,即便極個別通道發(fā)生了故障,剩余的通道依然可以保證整體感知畫面的連續(xù)性和完整性,不至于出現(xiàn)感知盲區(qū)。當然,這種“物理堆疊”的邏輯正在遭遇挑戰(zhàn)。如果通過分立元器件在激光雷達內(nèi)部塞進數(shù)百組模塊,不僅會導致體積膨脹到像個“大花盆”一樣難以集成進車身,更會讓成本飆升到車企無法承受的地步。因此,目前自動駕駛行業(yè)正嘗試芯片化方向,即利用半導體工藝將大量的發(fā)射器和探測器集成在厘米級的芯片上,通過硅光子技術(shù)實現(xiàn)高線束與緊湊體積的平衡。

wKgZPGly-7SASL_YAAAR42n7O-I377.jpg

高線束背后的系統(tǒng)性壓力與邊際成本

當激光雷達的線束越來越多,整車電子電氣架構(gòu)卻在承受著前所未有的壓力。線束的增加并不是一個孤立的參數(shù)變化,它涉及算力、帶寬、功耗和熱管理等一系列連鎖反應。首當其沖的是數(shù)據(jù)傳輸帶寬的挑戰(zhàn),一臺激光雷達的數(shù)據(jù)產(chǎn)生速率(Mbps)可以用核心公式進行定量估算,即:

數(shù)據(jù)產(chǎn)生速率(Mbps)=(V×H×V×R×D)/106

其中,N指線束或通道數(shù);H指水平點數(shù),其計算方式為,水平視角(FOV)/水平角分辨率;V指幀率(如5Hz、10Hz或20Hz);R指回波次數(shù);D指單個數(shù)據(jù)點的位數(shù)(Bit)。

根據(jù)這一公式,當線束從128線演進到256線或512線時,單秒產(chǎn)生的點云數(shù)量會從百萬級激增至五百萬級以上。這意味著車載以太網(wǎng)需要承載接近1Gbps的實時數(shù)據(jù)流,對于目前仍廣泛采用千兆以太網(wǎng)架構(gòu)的量產(chǎn)車而言,多激光雷達配置極易引發(fā)總線淤塞。

激光雷達線束的激增也會給計算平臺帶來壓力。自動駕駛系統(tǒng)需要實時對這些亂序的三維點云進行預處理、聚類、目標檢測和語義分割。主流的3D感知算法(如VoxelNet或基于Transformer的架構(gòu))的時間復雜度會隨輸入點數(shù)呈近線性增長。如果智駕芯片的算力儲備不足,海量點云將導致處理時延超過100毫秒的閉環(huán)底線,從而引發(fā)嚴重的行駛安全風險。

完成的任務(wù) 所需算力(TOPS) 占主流平臺比例(估算)
動態(tài)背景剔除(降噪) 約5TOPS ~2%
點云空間聚類 約3TOPS ~1%
3D目標分類與識別 約8TOPS ~3%
多目標運動預測 約4TOPS ~1.5%
總計(僅單顆高清雷達) 20TOPS以上 ~8%(以250TOPS平臺計)

激光雷達處理任務(wù)算力預估

在工程實踐中,為了維持實時性,需被迫在感知算法的前端進行人為的“下采樣”或隨機丟點。這實質(zhì)上會讓主機廠花費高昂成本采購的高線束雷達,在軟件層面通過算力去“抵消”掉這些增加的線數(shù),導致硬件層面的線數(shù)紅利無法有效轉(zhuǎn)化為實際的感知精度提升,這便是顯著的邊際效益遞減。

此外,高線束雷達由于激光脈沖發(fā)射頻率極高,其峰值電流和熱量堆積問題也變得異常棘手。在1550nm長波長路線上,由于其激光發(fā)生器的電光轉(zhuǎn)換效率較低,高線束配置下的散熱需求甚至可能逼近48V車載供電網(wǎng)絡(luò)的功率分配極限,迫使整車廠不得不設(shè)計更復雜的液冷系統(tǒng),這將進一步抬高整車的成本。

除了成本和算力,物理環(huán)境對高線束雷達也同樣有約束。雖然線束越多在晴朗天氣下看得越清,但在強降雨、濃霧或暴雪天,激光雷達的表現(xiàn)會發(fā)生斷崖式下跌。水滴對激光產(chǎn)生的米氏散射會制造大量的虛假噪點云,每秒產(chǎn)生的虛假目標點可能會達到2000個以上,這些噪聲將瞬間淹沒真實的障礙物信息。在這種極端場景下,線束的增加并不能提升變激光雷達的感知精度,相反,由于高線束雷達對弱信號更加敏感,在惡劣天氣下反而可能產(chǎn)生更多的誤報,從而引發(fā)不必要的緊急制動。

wKgZO2ly-7WABi2BAAASG3BOmsQ428.jpg

激光雷達探測架構(gòu)的技術(shù)變革

既然盲目堆砌物理線束存在明顯的瓶頸,自動駕駛行業(yè)開始尋求更聰明的解決方案。其中最具有代表性的趨勢是從“均勻全景掃描”轉(zhuǎn)向“動態(tài)感知分配”,也就是所謂的ROI(感興趣區(qū)域)技術(shù)或“凝視”模式。這種技術(shù)的核心不再是無腦增加激光器的物理數(shù)量,而是通過算法實時控制掃描機構(gòu)。

例如,速騰聚創(chuàng)和華為的某些技術(shù)架構(gòu)允許激光雷達在車輛高速行駛時,將大部分掃描線束集中在垂直FOV的正中央?yún)^(qū)域。這就像人類的眼睛,雖然余光可以看清周圍,但注意力焦點卻能鎖死在前方的障礙物上。這種架構(gòu)使得激光雷達在物理總線束不變的前提下,局部垂直分辨率能夠瞬間提升4到5倍,達到等效數(shù)百線甚至上千線的效果。這種按需分配資源的思路,不僅解決了遠距離探測的分辨率難題,更避免了在不需要關(guān)注的天空或路面區(qū)域浪費昂貴的帶寬和算力資源。這種改變標志著激光雷達正式進入了數(shù)字化時代。

激光雷達中還有一個技術(shù)變量是波長的選擇。目前市面上激光雷達存在905nm和1550nm兩種主流路線。905nm由于兼容成熟的硅基接收器,成本優(yōu)勢巨大,但其受到人眼安全功率的嚴格限制,導致其在提高線數(shù)和增加測距距離時面臨天然的“天花板”。

與之相對,1550nm波長的激光在人眼視網(wǎng)膜的吸收波段外,允許使用高出905nm數(shù)十倍的發(fā)射功率。這使得1550nm雷達在不增加線數(shù)的前提下,就能獲得更強的穿透力和更遠的探測距離,甚至能實現(xiàn)超遠感知。雖然1550nm的激光雷達目前仍面臨光纖激光器成本高、體積大、散熱難等問題,但隨著供應鏈的成熟,它在超高清感知領(lǐng)域的潛力被普遍看好。

激光雷達波長 905nm 1550nm
探測器材質(zhì) 成熟硅基(Si) 昂貴銦鎵砷(InGaAs)
人眼安全性 較低(需限制功率) 極高(允許大功率發(fā)射)
10%反射率量程 150m~200m 250m~500m
光斑發(fā)散度 較大(遠距離細節(jié)模糊) 極小(1/4 905nm光斑)
典型功耗 ~20W >30W
環(huán)境適應性 雨雪天表現(xiàn)較好 易被大氣水汽吸收
供應鏈成熟度 極高(受益于智能手機規(guī)模) 較低(光通信跨界,仍在降本)

905nm vs 1550nm激光雷達對比

此外,隨著FMCW(調(diào)頻連續(xù)波)激光雷達的崛起,將對傳統(tǒng)的ToF(飛行時間法)進行降維打擊。傳統(tǒng)的ToF雷達只能測量物體的距離,而FMCW通過測量反射波與參考波的頻率差,可以利用多普勒效應直接獲取物體的瞬時徑向速度。這意味著FMCW激光雷達即便線束較低,也能通過第四維的速度信息,精準地過濾掉靜止噪聲,識別出正在橫穿馬路的行人或突然加塞的車輛。這種“4D感知”能力極大減輕了后端感知算法對高密度點云的依賴,從另一個維度解開了線束競賽的死結(jié)。

wKgZO2ly-7aAIK71AAASAJELks8553.jpg

軟件定義雷達與下一代感知趨勢

當硬件線束的增長速度逐漸放緩,人工智能開始在軟件層面接管感知的提升任務(wù)。目前,很多技術(shù)正致力于研究點云超分辨率(Super-Resolution)算法。這種技術(shù)利用深度卷積神經(jīng)網(wǎng)絡(luò)或SRMamba等模型,可對低線束雷達輸出的稀疏點云進行特征學習和幾何重構(gòu)。通過在大規(guī)模高清點云數(shù)據(jù)集上進行訓練,AI可以學習到現(xiàn)實世界三維結(jié)構(gòu)的規(guī)律,從而將32線或64線的原始數(shù)據(jù)“補全”到等效128線甚至更高的精細度。

隨著跨模態(tài)融合技術(shù)的應用,一些先進的感知框架可以將激光雷達的稀疏三維信息與車載攝像頭的二維高清圖像進行深度耦合。通過圖像中的邊緣細節(jié)和顏色特征,算法可以為離散的點云提供“語義黏合”,生成既具備三維深度又具備圖像級解析力的環(huán)境模型。這意味著,不需要在車頂裝載一顆昂貴的512線雷達,而是可以通過一顆高性價比的128線雷達配合強力的AI推理引擎,就能達到超越物理極限的感知效果。這種“軟硬結(jié)合”的路徑,被認為是打破目前自動駕駛硬件成本瓶頸、實現(xiàn)“智駕平權(quán)”的必由之路。

當然,在安全性要求極高的自動駕駛領(lǐng)域,“確定性”一定是高于一切的。生成式算法雖然能提升畫面的清晰度,但也可能產(chǎn)生“幻覺”,即在點云稀疏區(qū)域補全出一個并不存在的結(jié)構(gòu),或者將一個真實的小障礙物誤認為背景噪聲進行平滑處理。

wKgZO2ly-7eAEiP_AAARwcz1hbg211.jpg

最后的話

自動駕駛激光雷達線束的演進已經(jīng)從單純的“數(shù)量比拼”進入了“質(zhì)量博弈”的新階段。對于L2+級的量產(chǎn)乘用車,出于成本和算力的現(xiàn)實考量,128線輔以ROI動態(tài)掃描或?qū)⒊蔀樾袠I(yè)主流;而對于L4級Robotaxi,為了應對極端的安全性挑戰(zhàn),超高清線束雷達與多傳感器深度融合依然是不可逾越的護城河。激光雷達的線束并非越多就越好,只有當傳感器規(guī)格與整車算力平臺、后端感知算法以及最終的商業(yè)邏輯達成系統(tǒng)性的閉環(huán)時,這樣的技術(shù)才具有真正的價值。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 激光雷達
    +關(guān)注

    關(guān)注

    978

    文章

    4442

    瀏覽量

    195997
  • 自動駕駛
    +關(guān)注

    關(guān)注

    792

    文章

    14798

    瀏覽量

    178263
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何為自動駕駛汽車選擇一款合適的激光雷達?

    [首發(fā)于智駕最前沿微信公眾號]在很多自動駕駛的車輛上,都加裝了激光雷達(LiDAR),激光雷達是一種用激光測距離的傳感器。它會往周圍發(fā)激光,
    的頭像 發(fā)表于 12-14 09:58 ?2541次閱讀
    如何為<b class='flag-5'>自動駕駛</b>汽車選擇一款合適的<b class='flag-5'>激光雷達</b>?

    自動駕駛里的激光雷達有何作用?

    [首發(fā)于智駕最前沿微信公眾號]激光雷達(LiDAR)是一款把光當“尺子”來量距離的一類傳感器,在自動駕駛里負責“看清三維形狀和距離”。它和攝像頭、毫米波雷達不一樣,能直接給出稠密的三維點云,幫助車輛
    的頭像 發(fā)表于 10-10 07:15 ?932次閱讀
    <b class='flag-5'>自動駕駛</b>里的<b class='flag-5'>激光雷達</b>有何作用?

    自動駕駛激光雷達可以安裝在哪些位置?

    為了讓自動駕駛汽車在各種復雜環(huán)境中都能精準感知周圍情況,激光雷達(LiDAR)作為重要的環(huán)境感知傳感器,發(fā)揮著不可替代的作用。激光雷達能夠發(fā)射數(shù)十萬乃至數(shù)百萬束激光脈沖,并接收反射光信
    的頭像 發(fā)表于 09-08 09:19 ?864次閱讀

    決定自動駕駛激光雷達感知質(zhì)量的因素有哪些?

    一個激光雷達是否適合自動駕駛,基本上取決于它在距離(range)、角度/點云分辨率(resolution)、以及在現(xiàn)實世界復雜條件下的魯棒性(robustness)。
    的頭像 發(fā)表于 08-20 12:08 ?2091次閱讀
    決定<b class='flag-5'>自動駕駛</b><b class='flag-5'>激光雷達</b>感知質(zhì)量的因素有哪些?

    自動駕駛到具身智能,激光雷達緣何一邊被嫌棄,一邊被追捧?

    自從自動駕駛被提出,激光雷達就一直處于技術(shù)討論的中央,雖然在自動駕駛技術(shù)發(fā)展過程中,也出現(xiàn)了關(guān)于純視覺的討論,但激光雷達依然是被很多廠商所采用。具身智能的出現(xiàn),則再一次讓
    的頭像 發(fā)表于 07-24 18:10 ?979次閱讀

    自動駕駛只用激光雷達進行感知會有哪些問題?

    [首發(fā)于智駕最前沿微信公眾號]自動駕駛依賴激光雷達(LiDAR)技術(shù)已成為行業(yè)內(nèi)的主流選擇之一。激光雷達通過發(fā)射和接收激光脈沖,繪制周圍環(huán)境的三維點云,為車輛提供精確的空間感知
    的頭像 發(fā)表于 07-02 08:59 ?889次閱讀

    自動駕駛激光雷達中常說的“”是個啥?

    [首發(fā)于智駕最前沿微信公眾號]在自動駕駛領(lǐng)域,激光雷達(LiDAR)常被貼上“16”、“32”、“64”乃至“128
    的頭像 發(fā)表于 06-13 08:58 ?1031次閱讀

    自動駕駛激光雷達之間會相互干擾嗎?

    [首發(fā)于智駕最前沿微信公眾號]就在最近,有一位小伙伴問了一個非常有趣的問題,如果多輛搭載激光雷達自動駕駛車輛相遇,是否會相互干擾?對于這個問題,智駕最前沿查閱了多份資料及相關(guān)文獻,今天就帶大家分析
    的頭像 發(fā)表于 06-03 10:02 ?773次閱讀

    激光雷達自動駕駛領(lǐng)域中的優(yōu)勢

    自動駕駛系統(tǒng)中,激光雷達起到了至關(guān)重要的作用,它是實現(xiàn)高度自動駕駛的關(guān)鍵傳感器之一。激光雷達通過發(fā)射和接收多束脈沖信號,通過測量ToF(Time of Flight,飛行時間),從而
    的頭像 發(fā)表于 05-15 11:15 ?1174次閱讀
    <b class='flag-5'>激光雷達</b>在<b class='flag-5'>自動駕駛</b>領(lǐng)域中的優(yōu)勢

    自動駕駛激光雷達:原理、類型與應用梳理

    來探測物體。白天或黑夜下的物體與車之間的距離。甚至由于反射度的不同,車道和路面也可以區(qū)分。光束無法探測到被遮擋的物體。 2.激光雷達的關(guān)鍵參數(shù) 點頻:每幀水平方向平均點數(shù)x垂直方向平均點數(shù)x幀率=(水平視場角/水平角分辨率)×(垂直視場角/垂直角分辨率) 掃描頻率:10
    的頭像 發(fā)表于 04-25 11:48 ?2529次閱讀
    <b class='flag-5'>自動駕駛</b><b class='flag-5'>激光雷達</b>:原理、類型與應用梳理

    愛普生高精度車規(guī)晶振助力激光雷達自動駕駛

    自動駕駛技術(shù)快速落地的今天,激光雷達作為車輛的“智慧之眼”,其測距精度與可靠性直接決定了自動駕駛系統(tǒng)的安全上限。而在這雙“眼睛”的核心,愛普生(EPSON)的高精度車規(guī)晶振以卓越性能成為激光
    的頭像 發(fā)表于 04-07 17:38 ?657次閱讀
    愛普生高精度車規(guī)晶振助力<b class='flag-5'>激光雷達</b><b class='flag-5'>自動駕駛</b>

    自動駕駛中的激光雷達是否會傷害人眼?

    提到激光,很多人都會下意識想到“激光筆”,相信在童年玩激光筆時,一定會被告知不能直接對著人眼照射,會對人眼造成傷害。但隨著自動駕駛技術(shù)的不斷發(fā)展,
    的頭像 發(fā)表于 03-24 09:26 ?1051次閱讀
    <b class='flag-5'>自動駕駛</b>中的<b class='flag-5'>激光雷達</b>是否會傷害人眼?

    激光雷達技術(shù):自動駕駛的應用與發(fā)展趨勢

    隨著近些年科技不斷地創(chuàng)新,自動駕駛技術(shù)正逐漸從概念走向現(xiàn)實,成為汽車行業(yè)的重要發(fā)展方向。在眾多傳感器技術(shù)中,激光雷達(LiDAR)因其獨特的優(yōu)勢,被認為是實現(xiàn)高級自動駕駛功能的關(guān)鍵。激光雷達
    的頭像 發(fā)表于 03-10 10:16 ?1521次閱讀
    <b class='flag-5'>激光雷達</b>技術(shù):<b class='flag-5'>自動駕駛</b>的應用與發(fā)展趨勢

    激光雷達自動駕駛走的一段彎路嗎?

    感知系統(tǒng)作為自動駕駛汽車的“眼睛”和“神經(jīng)中樞”,扮演著至關(guān)重要的角色,自動駕駛車輛需要依靠傳感器獲取外部環(huán)境信息,以便在瞬息萬變的道路上準確而及時地做出決策。激光雷達(Lidar)作為一種高精度
    的頭像 發(fā)表于 02-19 09:09 ?827次閱讀

    禾賽激光雷達助力寶馬智能工廠自動駕駛

    近日,禾賽科技(納斯達克:HSAI),全球領(lǐng)先的激光雷達(LiDAR)研發(fā)與制造企業(yè),宣布與瑞士自動駕駛解決方案提供商Embotech AG及法國空間智能軟件開發(fā)商Outsight達成戰(zhàn)略合作。此次
    的頭像 發(fā)表于 02-11 09:46 ?1037次閱讀