chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

推進(jìn)摩爾定律,臺(tái)積電力推SoIC 3D封裝技術(shù)

h1654155973.6121 ? 來(lái)源:YXQ ? 2019-07-08 11:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

自2018年4月始,臺(tái)積電已在眾多技術(shù)論壇或研討會(huì)中揭露創(chuàng)新的SoIC技術(shù),這個(gè)被譽(yù)為再度狠甩三星在后的秘密武器,究竟是如何厲害?

臺(tái)積電首度對(duì)外界公布創(chuàng)新的系統(tǒng)整合單芯片(SoIC)多芯片3D堆疊技術(shù),是在2018年4月的美國(guó)加州圣塔克拉拉(Santa Clara)第二十四屆年度技術(shù)研討會(huì)上。

推進(jìn)摩爾定律臺(tái)積電力推SoIC 3D封裝技術(shù)

隨著先進(jìn)納米制程已逼近物理極限,摩爾定律發(fā)展已難以為繼,無(wú)法再靠縮小線寬同時(shí)滿足性能、功耗、面積及訊號(hào)傳輸速度等要求;再加上封裝技術(shù)難以跟上先進(jìn)制程的發(fā)展進(jìn)程,因此三星、臺(tái)積電、英特爾等晶圓代工巨擘紛紛跨足封裝領(lǐng)域,要借重先進(jìn)的封裝技術(shù)實(shí)現(xiàn)更高性能、更低耗電量、更為小體積、訊號(hào)傳輸速度更快的產(chǎn)品。

甚至,在逐步進(jìn)入后摩爾定律時(shí)代后,晶圓代工大廠的發(fā)展重心,也逐漸從過(guò)去追求更先進(jìn)納米制程,轉(zhuǎn)向封裝技術(shù)的創(chuàng)新。而,SoIC就在這樣的前提之下誕生了。

若以臺(tái)積電于2009年正式進(jìn)軍封裝領(lǐng)域估算,SoIC是臺(tái)積電耗費(fèi)十年才磨出的寶劍,被譽(yù)為可再次把三星狠狠甩在后頭、實(shí)現(xiàn)3D IC的高階封裝技術(shù)。

晶圓對(duì)晶圓的3D IC技術(shù)

根據(jù)臺(tái)積電在第二十四屆年度技術(shù)研討會(huì)中的說(shuō)明,SoIC是一種創(chuàng)新的多芯片堆疊技術(shù),是一種晶圓對(duì)晶圓(Wafer-on-wafer)的鍵合(Bonding)技術(shù),這是一種3D IC制程技術(shù),可以讓臺(tái)積電具備直接為客戶生產(chǎn)3D IC的能力。

圖二: 臺(tái)積SoIC設(shè)計(jì)架構(gòu)示意。(source: vlsisymposium.org, 制圖:CTIMES)

讓外界大感驚艷的是,SoIC技術(shù)是采用硅穿孔(TSV)技術(shù),可以達(dá)到無(wú)凸起的鍵合結(jié)構(gòu),可以把很多不同性質(zhì)的臨近芯片整合在一起,而且當(dāng)中最關(guān)鍵、最神秘之處,就在于接合的材料,號(hào)稱是價(jià)值高達(dá)十億美元的機(jī)密材料,因此能直接透過(guò)微小的孔隙溝通多層的芯片,達(dá)成在相同的體積增加多倍以上的性能,簡(jiǎn)言之,可以持續(xù)維持摩爾定律的優(yōu)勢(shì)。

圖三: SoIC的微芯片平面圖。(source: vlsisymposium.org)

據(jù)了解,SoIC是基于臺(tái)積電的CoWoS(Chip on wafer on Substrate)與多晶圓堆疊(WoW)封裝技術(shù)開(kāi)發(fā)的新一代創(chuàng)新封裝技術(shù),未來(lái)將應(yīng)用于十納米及以下的先進(jìn)制程進(jìn)行晶圓級(jí)的鍵合技術(shù),被視為進(jìn)一步強(qiáng)化臺(tái)積電先進(jìn)納米制程競(jìng)爭(zhēng)力的利器。2018年10月,臺(tái)積電在第三季法說(shuō)會(huì)上,已針對(duì)萬(wàn)眾矚目的SoIC技術(shù)給出明確量產(chǎn)時(shí)間,預(yù)期2020年開(kāi)始挹注臺(tái)積電的營(yíng)收貢獻(xiàn),至2021年將會(huì)大量生產(chǎn),挹注臺(tái)積電更加顯著的營(yíng)收貢獻(xiàn)。

六月,臺(tái)積電赴日本參加VLSI技術(shù)及電路研討會(huì)發(fā)表技術(shù)論文時(shí),也針對(duì)SoIC技術(shù)揭露論文,論文中表示SoIC解決方案將不同尺寸、制程技術(shù)及材料的裸晶堆疊在一起。相較于傳統(tǒng)使用微凸塊的三維積體電路解決方案,臺(tái)積電的SoIC的凸塊密度與速度高出數(shù)倍,同時(shí)大幅減少功耗。此外,SoIC能夠利用臺(tái)積電的InFO或CoWoS的后端先進(jìn)封裝至技術(shù)來(lái)整合其他芯片,打造強(qiáng)大的3D×3D系統(tǒng)級(jí)解決方案。

外界咸認(rèn),從臺(tái)積電最初提出的2.5版CoWoS技術(shù),至獨(dú)吃蘋果的武器InFO(整合型扇型封裝)技術(shù),下一個(gè)稱霸晶圓代工產(chǎn)業(yè)的,就是SoIC技術(shù)。

攤開(kāi)臺(tái)積電公布的2019年第一季財(cái)報(bào),10納米及以下納米制程的營(yíng)收貢獻(xiàn),已大大超越16納米制程的營(yíng)收貢獻(xiàn),凸顯出未來(lái)十納米及以下先進(jìn)制程已勢(shì)不可當(dāng)。

也因此,2019年,電子設(shè)計(jì)自動(dòng)化(EDA)大廠,如益華電腦(Cadence)、明導(dǎo)國(guó)際(Mentor)、ANSYS皆已相繼推出支援臺(tái)積電SoIC的解決方案,并已通過(guò)臺(tái)積電認(rèn)證,準(zhǔn)備迎接SoIC輝煌時(shí)代的來(lái)臨。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 臺(tái)積電
    +關(guān)注

    關(guān)注

    44

    文章

    5778

    瀏覽量

    173392
  • 3D封裝
    +關(guān)注

    關(guān)注

    9

    文章

    146

    瀏覽量

    28109

原文標(biāo)題:英特爾和臺(tái)積電最新3D封裝技術(shù)

文章出處:【微信號(hào):xinlun99,微信公眾號(hào):芯論】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+半導(dǎo)體芯片產(chǎn)業(yè)的前沿技術(shù)

    為我們重點(diǎn)介紹了AI芯片在封裝、工藝、材料等領(lǐng)域的技術(shù)創(chuàng)新。 一、摩爾定律 摩爾定律是計(jì)算機(jī)科學(xué)和電子工程領(lǐng)域的一條經(jīng)驗(yàn)規(guī)律,指出集成電路上可容納的晶體管數(shù)量每18-24個(gè)月會(huì)增加一倍
    發(fā)表于 09-15 14:50

    淺談3D封裝與CoWoS封裝

    自戈登·摩爾1965年提出晶體管數(shù)量每18-24個(gè)月翻倍的預(yù)言以來(lái),摩爾定律已持續(xù)推動(dòng)半導(dǎo)體技術(shù)跨越半個(gè)世紀(jì),從CPU、GPU到專用加速器均受益于此。
    的頭像 發(fā)表于 08-21 10:48 ?1228次閱讀
    淺談<b class='flag-5'>3D</b><b class='flag-5'>封裝</b>與CoWoS<b class='flag-5'>封裝</b>

    3D封裝的優(yōu)勢(shì)、結(jié)構(gòu)類型與特點(diǎn)

    nm 時(shí),摩爾定律的進(jìn)一步發(fā)展遭遇瓶頸。傳統(tǒng) 2D 封裝因互連長(zhǎng)度較長(zhǎng),在速度、能耗和體積上難以滿足市場(chǎng)需求。在此情況下,基于轉(zhuǎn)接板技術(shù)的 2.5D
    的頭像 發(fā)表于 08-12 10:58 ?1538次閱讀
    <b class='flag-5'>3D</b><b class='flag-5'>封裝</b>的優(yōu)勢(shì)、結(jié)構(gòu)類型與特點(diǎn)

    Chiplet與3D封裝技術(shù):后摩爾時(shí)代的芯片革命與屹立芯創(chuàng)的良率保障

    摩爾定律逐漸放緩的背景下,Chiplet(小芯片)技術(shù)3D封裝成為半導(dǎo)體行業(yè)突破性能與集成度瓶頸的關(guān)鍵路徑。然而,隨著芯片集成度的提高,氣泡缺陷成為影響
    的頭像 發(fā)表于 07-29 14:49 ?472次閱讀
    Chiplet與<b class='flag-5'>3D</b><b class='flag-5'>封裝</b><b class='flag-5'>技術(shù)</b>:后<b class='flag-5'>摩爾</b>時(shí)代的芯片革命與屹立芯創(chuàng)的良率保障

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎(jiǎng)作品,來(lái)自上??萍即髮W(xué)劉賾源的投稿。著名的摩爾定律中指出,集成電路每過(guò)一定時(shí)間就會(huì)性能翻倍,成本減半。那么電力電子當(dāng)中是否也存在著摩爾定律呢?19
    的頭像 發(fā)表于 05-10 08:32 ?486次閱讀
    <b class='flag-5'>電力</b>電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    從焊錫膏到3D堆疊:材料創(chuàng)新如何重塑芯片性能規(guī)則?

    摩爾定律逼近物理極限的當(dāng)下,先進(jìn)封裝技術(shù)正成為半導(dǎo)體行業(yè)突破性能瓶頸的關(guān)鍵路徑。以系統(tǒng)級(jí)封裝(SiP)、晶圓級(jí)封裝(WLP)、
    的頭像 發(fā)表于 04-10 14:36 ?872次閱讀
    從焊錫膏到<b class='flag-5'>3D</b>堆疊:材料創(chuàng)新如何重塑芯片性能規(guī)則?

    先進(jìn)封裝工藝面臨的挑戰(zhàn)

    在先進(jìn)制程遭遇微縮瓶頸的背景下,先進(jìn)封裝朝著 3D 異質(zhì)整合方向發(fā)展,成為延續(xù)摩爾定律的關(guān)鍵路徑。3D 先進(jìn)封裝
    的頭像 發(fā)表于 04-09 15:29 ?719次閱讀

    3D封裝與系統(tǒng)級(jí)封裝的背景體系解析介紹

    3D封裝與系統(tǒng)級(jí)封裝概述 一、引言:先進(jìn)封裝技術(shù)的演進(jìn)背景 隨著摩爾定律逐漸逼近物理極限,半導(dǎo)體
    的頭像 發(fā)表于 03-22 09:42 ?1290次閱讀
    <b class='flag-5'>3D</b><b class='flag-5'>封裝</b>與系統(tǒng)級(jí)<b class='flag-5'>封裝</b>的背景體系解析介紹

    瑞沃微先進(jìn)封裝:突破摩爾定律枷鎖,助力半導(dǎo)體新飛躍

    在半導(dǎo)體行業(yè)的發(fā)展歷程中,技術(shù)創(chuàng)新始終是推動(dòng)行業(yè)前進(jìn)的核心動(dòng)力。深圳瑞沃微半導(dǎo)體憑借其先進(jìn)封裝技術(shù),用強(qiáng)大的實(shí)力和創(chuàng)新理念,立志將半導(dǎo)體行業(yè)邁向新的高度。 回溯半導(dǎo)體行業(yè)的發(fā)展軌跡,摩爾定律
    的頭像 發(fā)表于 03-17 11:33 ?600次閱讀
    瑞沃微先進(jìn)<b class='flag-5'>封裝</b>:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導(dǎo)體新飛躍

    先進(jìn)封裝技術(shù):3.5D封裝、AMD、AI訓(xùn)練降本

    受限,而芯片級(jí)架構(gòu)通過(guò)將SoC分解為多個(gè)小芯片(chiplets),利用先進(jìn)封裝技術(shù)實(shí)現(xiàn)高性能和低成本。 芯片級(jí)架構(gòu)通過(guò)將傳統(tǒng)單片系統(tǒng)芯片(SoC)分解為多個(gè)小芯片(chiplets),利用先進(jìn)封裝
    的頭像 發(fā)表于 02-14 16:42 ?1320次閱讀
    先進(jìn)<b class='flag-5'>封裝</b><b class='flag-5'>技術(shù)</b>:3.5<b class='flag-5'>D</b><b class='flag-5'>封裝</b>、AMD、AI訓(xùn)練降本

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術(shù)將拯救摩爾定律。 為了繼續(xù)縮小電路尺寸,芯片制造商正在爭(zhēng)奪每一納米的空間。但在未來(lái)5年里,一項(xiàng)涉及幾百乃至幾千納米的更大尺度的技術(shù)可能同樣重要。 這項(xiàng)
    的頭像 發(fā)表于 02-09 09:21 ?877次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    2.5D3D封裝技術(shù)介紹

    整合更多功能和提高性能是推動(dòng)先進(jìn)封裝技術(shù)的驅(qū)動(dòng),如2.5D3D封裝。 2.5D/
    的頭像 發(fā)表于 01-14 10:41 ?2216次閱讀
    2.5<b class='flag-5'>D</b>和<b class='flag-5'>3D</b><b class='flag-5'>封裝</b><b class='flag-5'>技術(shù)</b>介紹

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長(zhǎng)期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每?jī)赡陸?yīng)翻一番)越來(lái)越難以維持??s小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當(dāng)銅互連按比例縮小時(shí),其電阻率急劇上升,這會(huì)
    的頭像 發(fā)表于 01-09 11:34 ?773次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個(gè)月增加一倍的趨勢(shì)。該定律不僅推動(dòng)了計(jì)算機(jī)硬件的快速發(fā)展,也對(duì)多個(gè)領(lǐng)域產(chǎn)生了深遠(yuǎn)影響。
    的頭像 發(fā)表于 01-07 18:31 ?2468次閱讀

    臺(tái)電CoWoS封裝A1技術(shù)介紹

    進(jìn)步,先進(jìn)封裝行業(yè)的未來(lái)非常活躍。簡(jiǎn)要回顧一下,目前有四大類先進(jìn)封裝。 3D = 有源硅堆疊在有源硅上——最著名的形式是利用臺(tái)電的
    的頭像 發(fā)表于 12-21 15:33 ?3591次閱讀
    <b class='flag-5'>臺(tái)</b><b class='flag-5'>積</b>電CoWoS<b class='flag-5'>封裝</b>A1<b class='flag-5'>技術(shù)</b>介紹