完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>
標簽 > 電解質(zhì)
電解質(zhì)是溶于水溶液中或在熔融狀態(tài)下就能夠?qū)щ姷幕衔?。根?jù)其電離程度可分為強電解質(zhì)和弱電解質(zhì),幾乎全部電離的是強電解質(zhì),只有少部分電離的是弱電解質(zhì)。
文章:782個 瀏覽:20687次 帖子:23個
Li+能否快速從正極傳遞到負極決定了快充速度的高低[1–3]。如圖1(b)所示,快速充電的限制因素一般可分為兩個方面:第一個是傳質(zhì)過程,包括電解質(zhì)和電極...
包含了我們平時常用的貼片電解電容,總共30種封裝及精美3D模型。完全能滿足日常設(shè)計使用。每個封裝都搭配了精美的3D模型哦。
鋰金屬電池室溫固態(tài)聚合物電解質(zhì)的鋰離子傳導機制
本文開發(fā)了一種異質(zhì)雙層固態(tài)聚合物電解質(zhì)(DSPE),并闡明其在室溫下的工作機理。通過分子動力學(MD)模擬提出了丁二腈(SN)與鋰鹽之間的分子間相互作用...
通過雙陰離子調(diào)節(jié)電解質(zhì)實現(xiàn)實用的高能量密度鋰金屬電池
使用鋰金屬負極和高壓正極的鋰金屬電池(LMB)被認為是最有前途的高能量密度電池技術(shù)之一。
水系鋅離子電池具備良好的安全性、低毒性、易操作性以及相對低廉的制造成本,在大規(guī)模電化學儲能應(yīng)用中前景廣闊。
在大批量卷對卷制備硫化物電池時,濕法涂布工藝[圖2(b)]可能更適合放大。這是由于為了提供高通量卷對卷工藝所需的力學性能,需要使用聚合物黏合劑、溶劑來制...
水性鋅離子電池具有安全性高、成本低等優(yōu)點,在大規(guī)模儲能領(lǐng)域具有經(jīng)濟競爭力。作為AZIBs的重要組成部分,Zn金屬負極具有較高的比容量(820 mAh g...
構(gòu)建雙功能非對稱型纖維素凝膠電解質(zhì)同時抑制穿梭效應(yīng)和枝晶生長
在之前的工作中,我們團隊已經(jīng)利用油水界面自組裝的方法制備了UiO66/黑磷異質(zhì)結(jié)(Chemical Engineering Journal, 2023,...
構(gòu)建雙功能非對稱型纖維素凝膠電解質(zhì)同時抑制穿梭效應(yīng)和枝晶生長
隨著電子儲能設(shè)備的日益更新?lián)Q代以及電動汽車領(lǐng)域的發(fā)展,鋰硫電池具有超高的比容量(1675 mAh/g)和超高的能量密度(2600 Wh/kg)受到科研人...
Angew:高介電固態(tài)離子凝膠電解質(zhì)實現(xiàn)Li+均勻傳輸
由于聚合物較差的鏈段移動能力,因此鋰離子在其內(nèi)部的傳輸會受到阻礙。雖然ILs可以增強聚合物鏈段的移動,但它內(nèi)部的陽離子與自身陰離子配位度低,這部分陽離子...
Al和Sm共摻雜單晶富鎳正極材料高結(jié)構(gòu)穩(wěn)定性的機理
富鎳層狀氧化物因其優(yōu)越的比容量和低廉的成本而備受關(guān)注,但在循環(huán)過程中結(jié)構(gòu)退化速度較快。
復合凝膠電解質(zhì)中無機填料助力鋰金屬電池富無機物SEI的形成
電解質(zhì)作為與鋰金屬直接接觸的成分,它們所產(chǎn)生的電極/電解質(zhì)界面(EEI,包括電解質(zhì)/正極或電解質(zhì)/負極界面)的性質(zhì)與電解質(zhì)的成分密切相關(guān),同時對于鋰金屬...
2023-04-06 標簽:電解質(zhì)DME固態(tài)電解質(zhì) 2442 0
全固態(tài)電池的單片100%硅片負極在室溫下實現(xiàn)高面積容量
與使用易燃有機液體電解質(zhì)的傳統(tǒng)鋰離子電池相比,使用硫化物基電解質(zhì)的全固態(tài)電池ASSBs提供了理想的幾何結(jié)構(gòu),以獲得更高的能量密度和更高的安全性。
由于鋰枝晶和及其引起的短路等問題,固態(tài)鋰金屬電池中仍面臨著挑戰(zhàn)。近年來,研究人員對枝晶生長機制了解了很多,而枝晶的生長問題仍未得到解決。
2023-04-04 標簽:電解質(zhì)固態(tài)電池電池系統(tǒng) 1338 0
當前,鋰金屬電池(Li-metal batteries, LMBs)由于具備高理論能量密度(> 350 Wh kg-1)被譽為下一代二次電池的“圣杯”。
固態(tài)電池作為一種有前景且安全穩(wěn)定的高能量高倍率電化學存儲技術(shù)仍然面臨長期性能、比功率和經(jīng)濟可行性等問題。
多孔硅基鋰離子電池負極材料的設(shè)計和挑戰(zhàn)
鋰離子電池作為最具電化學性質(zhì)的儲能設(shè)備之一,由于其無與倫比的優(yōu)勢,仍然是能源市場的主力軍。
V2C MXene組件促進實用鋰硫電池的硫釋放動力學和鋰離子篩分
鋰硫 (Li–S) 電池被認為是最有希望實現(xiàn) 500 Wh kg–1能量密度的電池之一。然而,穿梭效應(yīng)、緩慢的硫轉(zhuǎn)化動力學和鋰枝晶生長等挑戰(zhàn)嚴重阻礙了實際實施。
鈉-鉀電解質(zhì)界面相實現(xiàn)室溫/0°C固態(tài)鈉金屬電池研究
基于無機固態(tài)電解質(zhì)的金屬電池因其能量密度和安全性的優(yōu)勢在電化學儲能領(lǐng)域具有巨大應(yīng)用潛力。
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術(shù) | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |