chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

用于提高功率密度的無源元件創(chuàng)新

jf_pJlTbmA9 ? 來源:jf_pJlTbmA9 ? 作者:jf_pJlTbmA9 ? 2023-07-08 11:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

為什么提高功率密度是轉(zhuǎn)換器設計人員的重要目標?不論是數(shù)據(jù)中心服務器等能源密集型系統(tǒng),還是道路上越來越智能的車輛,為其供電的電源轉(zhuǎn)換電路需要能夠在更小的空間內(nèi)處理更大的功率。真的就是那么簡單。

隨著我們對這些系統(tǒng)的要求越來越高,它們必須在相同或更短時間內(nèi)完成更多工作。根據(jù)定義,這意味著輸出更多功率。但是無論在數(shù)據(jù)中心還是車輛中都一樣,空間都非常寶貴。構(gòu)建更大的電路來處理更高功率通常不是最佳選擇方案。事實上,在提高功率和能源效率的同時,要顯著減小系統(tǒng)尺寸有較大壓力。因此,提高功率密度是設計人員的首要目標,與此相結(jié)合的另一目標是提高效率,以緩解增大的散熱挑戰(zhàn)。隨著世界越來越多地依賴可再生能源發(fā)電,這對于進一步節(jié)約能源也很重要。

電源系統(tǒng)設計中的寬帶隙技術

在可幫助實現(xiàn)更高功率密度的選項中,寬帶隙 (WBG) 半導體已迅速獲得業(yè)界主流采納。例如,雖然目前還沒有大規(guī)模采用,但在汽車領域,電動汽車新貴已經(jīng)是WBG 半導體的重要支持者。而且隨著這種趨勢的發(fā)展,知名品牌正在迅速采取行動,以確保其即將推出的全電動汽車具有更高競爭力和可比的性能。

以碳化硅 (SiC) 、氮化鎵 (GaN) 和其他技術為代表的WBG器件能夠顯著提高功率轉(zhuǎn)換效率,尤其是能夠以比相應硅器件更高的開關頻率工作,同時還可以在更高溫度下可靠運行,從而緩解了熱管理挑戰(zhàn),并可以減小冷卻系統(tǒng)的尺寸、重量和復雜性。

更快的開關速度還使更小的電路能夠處理相同甚至更大的功率。具體來說,以更高的頻率進行開關操作允許采用體積更小的相關組件(如電容器電感器)來管理和平滑輸入和輸出電路中的能量流動,這種優(yōu)勢已經(jīng)廣為人知,然而,除了需要較小的電容和電感之外,還有其它優(yōu)勢。

對于基于普通硅功率半導體器件的轉(zhuǎn)換器,其典型開關頻率在幾十千赫茲范圍內(nèi),或者30~80kHz。在這些頻率下,可以采用被廣泛認可的聚丙烯電容器,而且,這種電容器經(jīng)過驗證,性能可靠,且最重要的是具有成本效益。然而,在這個頻率范圍之上,寄生效應就會導致過多的電阻損耗和自生熱。

更多材料科學介紹

大多數(shù)領先的電力電子團隊都在開發(fā)基于SiC 功率晶體管的全新轉(zhuǎn)換器原型,我們一直在磁過程中保持與他們的合作。通過研究這些新功率開關技術對支持電路提出的新要求,使我們能夠開發(fā) KC-LINK 陶瓷電容器,該電容器是基于專有的高壓 C0G 電介質(zhì),可確保極低的有效串聯(lián)電阻 (ESR) 和極低的熱阻。它們可以在低兆赫頻率范圍內(nèi)以最小的損耗運行,并且可以處理非常高的紋波電流,而電容相對于直流電壓則沒有變化。電容在整個溫度范圍內(nèi)也非常穩(wěn)定。由于能夠在高達 150℃的溫度下工作,因此在高功率密度應用中能夠靠近快速開關半導體進行安裝。已經(jīng)面市的產(chǎn)品系列可提供從 500V 到 2000V 的額定電壓,涵蓋廣泛的應用,包括用于400V 和 800V 的電動汽車電池系統(tǒng)。

我們還開發(fā)了一種瞬態(tài)液相燒結(jié) (TLPS)技術,這是一種非焊接互連技術,能夠?qū)崿F(xiàn)小尺寸高電容 MLCC 無引線堆棧,并可利用class-I C0G 電介質(zhì)的溫度穩(wěn)定性來實現(xiàn)高功率應用中無需冷卻即可達到 150℃甚至更高的工作溫度。

另一方面,WBG 在數(shù)據(jù)中心服務器的應用一般是基于 GaN 技術。多年來,典型的開關頻率一直停留在 300kHz 左右,但隨著 GaN技術的出現(xiàn)而增加,盡管目前仍然只有大約 900kHz。在該領域,我們發(fā)現(xiàn)磁性元件的性能是主要限制因素。電感器有兩種損耗機制,包括繞組引起的電阻損耗以及鐵氧體或金屬復合磁芯加熱時的能量損耗。理想的做法是在不影響磁芯磁導率的情況下最大限度地減少磁芯損耗,磁芯磁導率決定了其抵抗電路內(nèi)電流變化和在磁場中存儲能量的能力。

這是我們團隊已經(jīng)接受的另一個挑戰(zhàn),而且我們已經(jīng)完全準備好宣布在材料科學方面的新解決方案。在保持高磁導率的同時,這種新材料針對 1~5MHz 頻率范圍內(nèi)最低損耗進行了優(yōu)化,因此可以提高基于 GaN 轉(zhuǎn)換器的開關頻率。就像在 SiC 轉(zhuǎn)換器中一樣,提高開關頻率允許采用更小的電容和電感值,最終實現(xiàn)更高的功率密度。

提高電源開關頻率還有其他好處。可以大大降低保護主處理器等關鍵部件所需的負載瞬態(tài)去耦電容。從歷史上看,這些電容都采用鉭或鋁聚合物電容器。減少對去耦電容的依賴,可以將一小部分 II 類 MLCC(例如 X5R、X6S 或 X7R 器件)直接放置在處理器附近。我們目前正在努力的下一個目標是將鋁聚合物去耦電容器嵌入到封裝內(nèi)的芯片載體中,與片上硅電容器一起工作。這可以克服當今處理器設計人員所面臨的去耦挑戰(zhàn),并支持更高的轉(zhuǎn)換器頻率,未來可能高達 10MHz 甚至更高。這些可能需要大約五年的工程努力。

我們還發(fā)現(xiàn),提高系統(tǒng)某一部分的性能可能會陷入僵局,需要設計人員更密切地關注系統(tǒng)的其他部分以進行持續(xù)改進。我們的材料部門為了開發(fā)第一個開關槽式(switched-tank)轉(zhuǎn)換器,特意制定了 U2J 陶瓷電介質(zhì)。通過增加定制電感器幾何形狀以減少磁芯損耗,這些轉(zhuǎn)換器極大地提高了數(shù)據(jù)中心服務器分布式電源系統(tǒng)中 48V 到 12V 轉(zhuǎn)換的效率。

這些轉(zhuǎn)換器目前確定了 48V到12V 轉(zhuǎn)換效率的上限。當達到該限制時,關注點轉(zhuǎn)移到負載點 (POL) 轉(zhuǎn)換器上。在這里,高性能處理器和 FPGA 在低數(shù)字電源電壓和高時鐘頻率組合控制下運行,導致電流需求迅速變化,并達到峰值。通常用于為這些 IC 供電的多相穩(wěn)壓器會要求設計人員在瞬態(tài)響應與紋波電流之間進行權(quán)衡。瞬態(tài)響應會受到很大限制,因為所有相位都需要時間按順序穩(wěn)定。此外,這些多相穩(wěn)壓器不利于提高功率密度,因為在保持機械穩(wěn)定性的同時,減小電感器寬度變得不切實際。雙繞組、四端電感器使跨電感器穩(wěn)壓器 (TLVR) 的開發(fā)成為可能,其中所有相位能夠同時響應以實現(xiàn)更快的瞬態(tài)響應。 Yageo Group 旗下企業(yè)Pulse Electronics是 TLVR 電感器的市場領導者。

WBG 和噪聲發(fā)射

WBG 半導體的快速開關也給設計人員帶來了不想看到的挑戰(zhàn):電氣噪聲輻射或 EMI/EMC。為了應對這一設計挑戰(zhàn),使轉(zhuǎn)換器和逆變器符合相關標準要求,KEMET 的磁性元件小組開發(fā)了用于 EMI 共模扼流圈(Common Mode Chokes)的納米晶芯材料,該材料能夠在更小的封裝內(nèi)提供寬帶性能。

未來展望

包括先進材料、新電路拓撲以及對電容器和電感器的新需求在內(nèi),我們看到的所有進展彼此之間都相互關聯(lián),正是這些因素的共同作用,才推動了能源效率提高和功率密度的不斷進步。但誰能知道,我們是否會在某個時間達到一個極限,再也不會有超過這個極限而進一步改進的可能?

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 無源元件
    +關注

    關注

    1

    文章

    1293

    瀏覽量

    17421
  • 電源轉(zhuǎn)換電路

    關注

    0

    文章

    8

    瀏覽量

    2503
  • KEMET
    +關注

    關注

    1

    文章

    22

    瀏覽量

    6454
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    OBC功率密度目標4kW/L,如何通過電容選型突破空間瓶頸?

    我們在設計 11kW、800V平臺OBC 時,為實現(xiàn) 4kW/L 的高功率密度目標,發(fā)現(xiàn) 傳統(tǒng)牛角電容體積過大 導致布局困難,請問 永銘LKD系列 是否有滿足 高耐壓 且 體積小 的解決方案?
    發(fā)表于 12-02 09:24

    上海海思MCU產(chǎn)品Hi3071助力高功率密度電源創(chuàng)新設計

    自開關電源誕生以來,功率密度的提升一直是開關電源設備不斷演進的方向之一。
    的頭像 發(fā)表于 11-07 15:56 ?996次閱讀
    上海海思MCU產(chǎn)品Hi3071助力高<b class='flag-5'>功率密度</b>電源<b class='flag-5'>創(chuàng)新</b>設計

    Leadway GaN系列模塊的功率密度

    Leadway GaN系列模塊以120W/in3的功率密度為核心,通過材料創(chuàng)新、電路優(yōu)化與封裝設計,實現(xiàn)了體積縮減40%、效率提升92%+的突破。其價值在于為工業(yè)自動化、機器人、電動汽車等空間受限
    發(fā)表于 10-22 09:09

    功率密度碳化硅MOSFET軟開關三相逆變器損耗分析

    MOSFET 逆變器的功率密度,探討了采用軟開關技術的碳化硅 MOSFET 逆變器。 比較了不同開關頻率下的零電壓開關三相逆變器及硬開關三相逆變器的損耗分布和關鍵無源元件的體積, 討論了逆變器效率和關鍵無源元件體積與開關頻率之
    發(fā)表于 10-11 15:32 ?37次下載

    三菱電機SiC MOSFET模塊的高功率密度和低損耗設計

    鐵路牽引變流器作為軌道交通車輛動力系統(tǒng)的核心部件,正朝著高可靠性、高功率密度和高效率方向發(fā)展。目前IGBT仍是鐵路牽引領域的主流功率半導體器件,但是SiC MOSFET模塊的應用正在加速。本文重點介紹三菱電機SiC MOSFET模塊的高
    的頭像 發(fā)表于 09-23 09:26 ?1951次閱讀
    三菱電機SiC MOSFET模塊的高<b class='flag-5'>功率密度</b>和低損耗設計

    突破功率密度邊界:TI LMG342xR030 GaN FET技術解析與應用

    Texas Instruments LMG342xR030 GaN場效應晶體管(FET)集成了驅(qū)動器和保護功能,可使設計人員在電子設備系統(tǒng)中實現(xiàn)新的功率密度和效率水平。
    的頭像 發(fā)表于 09-19 11:06 ?537次閱讀
    突破<b class='flag-5'>功率密度</b>邊界:TI LMG342xR030 GaN FET技術解析與應用

    新能源汽車高功率密度電驅(qū)動系統(tǒng)關鍵技術趨勢

    一、新能源汽車高功率密度電驅(qū)動系統(tǒng)關鍵技術趨勢開發(fā)超高功率密度電機驅(qū)動系統(tǒng)的驅(qū)動力在于:相同體積或質(zhì)量下,輸出功率更大,超車加速能力和高速持續(xù)行駛能力更強,獲得優(yōu)異的動力性能和駕駛體驗;相同輸出
    的頭像 發(fā)表于 06-14 07:07 ?877次閱讀
    新能源汽車高<b class='flag-5'>功率密度</b>電驅(qū)動系統(tǒng)關鍵技術趨勢

    射頻前端模塊中使用的集成無源元件技術

    本文介紹了在射頻前端模塊(RF-FEM)中使用的集成無源元件(IPD)技術。
    的頭像 發(fā)表于 06-03 18:26 ?1159次閱讀
    射頻前端模塊中使用的集成<b class='flag-5'>無源元件</b>技術

    法拉電容具有高能量密度和高功率密度的特點,廣泛應用于以下領域

    法拉電容具有高能量密度和高功率密度的特點,廣泛應用于以下領域:1.電子設備:法拉電容可用于移動設備、電子手表、智能手機等電子產(chǎn)品中,用于儲存
    的頭像 發(fā)表于 02-26 13:28 ?976次閱讀
    法拉電容具有高能量<b class='flag-5'>密度</b>和高<b class='flag-5'>功率密度</b>的特點,廣泛應<b class='flag-5'>用于</b>以下領域

    DLP9500UV在波長為370nm脈沖激光下的DMD的峰值功率密度是多少?

    請問在波長為370nm脈沖激光下的DMD的峰值功率密度是多少?如何查看?
    發(fā)表于 02-20 07:49

    瑞豐光電推出金剛石基超大功率密度封裝

    針對傳統(tǒng)高功率封裝產(chǎn)品在應用中的諸多痛點,瑞豐光電憑借創(chuàng)新技術和卓越工藝,成功推出了行業(yè)突破性的大功率封裝新品——金剛石基超大功率密度封裝。這一新品不僅解決了傳統(tǒng)封裝產(chǎn)品的局限性,更為
    的頭像 發(fā)表于 02-19 14:44 ?1049次閱讀

    AN-348: 避開無源元件的陷阱

    電子發(fā)燒友網(wǎng)站提供《AN-348: 避開無源元件的陷阱.pdf》資料免費下載
    發(fā)表于 01-13 15:14 ?0次下載
    AN-348: 避開<b class='flag-5'>無源元件</b>的陷阱

    無源元件在硬件設計中如何選擇與應用?

    無源元件不需要外部電源,并且不增加或生成電力;它們僅消耗少量能量。相比之下,主動組件需要電源,如電池,以增強信號的功率。無源元件的例子包括電阻器、電容器和電感器,而晶體管和集成電路(IC)則屬于主動
    的頭像 發(fā)表于 12-30 15:23 ?1662次閱讀
    <b class='flag-5'>無源元件</b>在硬件設計中如何選擇與應用?

    芯干線科技出席高功率密度GaN數(shù)字電源技術交流會

    芯干線與世紀電源網(wǎng)強強聯(lián)手、傾心打造的“高功率密度 GaN 數(shù)字電源技術交流會”,于近日盛大啟幕!
    的頭像 發(fā)表于 12-24 15:24 ?1245次閱讀

    如何使用耦合電感器提高DC-DC應用中的功率密度?

    在數(shù)據(jù)中心和通信應用中,48伏特的配電系統(tǒng)相當普遍,許多方案用于將48V降至中間電壓軌道。最簡單的方法是使用降壓拓撲,它可以提供高性能,但往往在功率密度方面表現(xiàn)不足。升級多相降壓轉(zhuǎn)換器并采用耦合
    的頭像 發(fā)表于 12-23 14:07 ?1308次閱讀
    如何使用耦合電感器<b class='flag-5'>提高</b>DC-DC應用中的<b class='flag-5'>功率密度</b>?