chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

碳化硅 (SiC) 與氮化鎵 (GaN)應用 | 氮化硼高導熱絕緣片

向欣電子 ? 2024-09-16 08:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

f04ee17a-73be-11ef-bb4b-92fbcf53809c.png

SiC 和 GaN 被稱為“寬帶隙半導體”(WBG)。由于使用的生產(chǎn)工藝,WBG 設備顯示出以下優(yōu)點:

1.寬帶隙半導體

氮化鎵(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化鎵的帶隙為3.2 eV,而碳化硅的帶隙為3.4 eV。雖然這些值看起來相似,但它們明顯高于硅的帶隙。硅的帶隙僅為1.1 eV,比氮化鎵和碳化硅小三倍。這些化合物的較高帶隙允許氮化鎵和碳化硅舒適地支持更高電壓的電路,但它們不能像硅那樣支持低壓電路。

2.擊穿場強度

氮化鎵和碳化硅的擊穿場相對相似,氮化鎵的擊穿場為3.3 MV/cm,而碳化硅的擊穿場為3.5 MV/cm。與普通硅相比,這些擊穿場使化合物明顯更好地處理更高的電壓。硅的擊穿場為0.3 MV/cm,這意味著氮化鎵和碳化硅保持更高電壓的能力幾乎高出十倍。它們還能夠使用明顯更小的器件支持較低的電壓。

3.高電子遷移率晶體管(HEMT)

氮化鎵和碳化硅之間最顯著的區(qū)別在于它們的電子遷移率,這表明電子在半導體材料中的移動速度。首先,硅的電子遷移率為1500 cm^2/Vs.氮化鎵的電子遷移率為2000 cm^2/Vs,這意味著電子的移動速度比硅的電子快30%以上。然而,碳化硅的電子遷移率為650 cm^2/Vs,這意味著碳化硅的電子比GaN和硅的電子移動得慢。憑借如此高的電子遷移率,GaN幾乎是高頻應用的三倍。電子可以通過氮化鎵半導體比SiC快得多。

4.氮化鎵和碳化硅導熱系數(shù)

材料的導熱性是其通過自身傳遞熱量的能力??紤]到材料的使用環(huán)境,導熱系數(shù)直接影響材料的溫度。在大功率應用中,材料的低效率會產(chǎn)生熱量,從而提高材料的溫度,并隨后改變其電氣特性。氮化鎵的導熱系數(shù)為1.3 W/cmK,實際上比硅的導熱系數(shù)差,硅的導率為1.5 W/cmK。然而,碳化硅的導熱系數(shù)為5 W/cmK,使其在傳遞熱負荷方面提高了近三倍。這一特性使碳化硅在高功率、高溫應用中具有很高的優(yōu)勢。

5.半導體晶圓制造工藝

目前的制造工藝是氮化鎵和碳化硅的限制因素,因為這些工藝比廣泛采用的硅制造工藝更昂貴、精度更低或能源密集。例如,氮化鎵在小面積上含有大量的晶體缺陷。另一方面,硅每平方厘米只能包含100個缺陷。顯然,這種巨大的缺陷率使得GaN效率低下。雖然制造商近年來取得了長足的進步,但GaN仍在努力滿足嚴格的半導體設計要求。

6.功率半導體市場

與硅相比,目前的制造技術限制了氮化鎵和碳化硅的成本效益,使這兩種高功率材料在短期內(nèi)更加昂貴。然而,這兩種材料在特定半導體應用中都具有強大的優(yōu)勢。碳化硅在短期內(nèi)可能是一種更有效的產(chǎn)品,因為它比氮化鎵更容易制造更大、更均勻的SiC晶片。隨著時間的推移,鑒于其更高的電子遷移率,氮化鎵將在小型高頻產(chǎn)品中找到自己的位置。碳化硅在較大的功率產(chǎn)品中將更可取,因為它的功率能力比氮化鎵更高的導熱性。

f0f9d724-73be-11ef-bb4b-92fbcf53809c.png

氮化鎵和碳化硅器件,與硅半導體(LDMOS) MOSFET和超級結MOSFET競爭。GaN和SiC器件在某些方面是相似的,但也有很大的差異。

f1224b6e-73be-11ef-bb4b-92fbcf53809c.png

圖1.高壓、大電流,開關頻率的關系,以及主要應用領域。

寬禁帶半導體

WBG化合物半導體具有較高的電子遷移率和較高的帶隙能量,轉化為優(yōu)于硅的特性。由WBG化合物半導體制成的晶體管具有更高的擊穿電壓和對高溫的耐受性。這些器件在高壓和高功率應用中比硅更有優(yōu)勢。f15f6f76-73be-11ef-bb4b-92fbcf53809c.png圖2. 雙裸片雙場效應管(FET)級聯(lián)電路將GaN晶體管轉換為常關斷器件,實現(xiàn)了大功率開關電路中的標準增強型工作模式與硅相比,WBG晶體管的開關速度也更快,可在更高的頻率下工作。更低的“導通”電阻意味著它們耗散的功率更小,從而提升能效。這種獨特的特性組合使這些器件對汽車應用中一些最嚴苛要求的電路具有吸引力,特別是混合動力和電動車。

GaN和SiC晶體管以應對汽車電氣設備的挑戰(zhàn)GaN和SiC器件的主要優(yōu)勢:高電壓能力,有650 V、900 V和1200 V的器件,碳化硅:更高的1700V.3300V和6500V。更快的開關速度,更高的工作溫度。更低導通電阻,功率耗散最小,能效更高。

GaN器件

在開關應用中,通?!瓣P斷”的增強型(或E型)器件是首選,這導致了E型GaN器件的發(fā)展首先是兩個FET器件的級聯(lián)(圖2)?,F(xiàn)在,標準的e型GaN器件已問世。它們可以在高達10兆赫頻率下進行開關,功率達幾十千瓦。

GaN器件被廣泛用于無線設備中,作為頻率高達100 GHz的功率放大器。一些主要的用例是蜂窩基站功率放大器、衛(wèi)星發(fā)射器和通用射頻放大。然而,由于高壓(高達1,000 V)、高溫和快速開關,它們也被納入各種開關電源應用,如DC-DC轉換器、逆變器和電池充電器。

SiC器

SiC晶體管是天然的E型MOSFET。這些器件可在高達1 MHz的頻率下進行開關,其電壓和電流水平遠高于硅MOSFET。最大漏源電壓高達約1,800 V,電流能力為100安培。此外,SiC器件的導通電阻比硅MOSFET低得多,因而在所有開關電源應用(SMPS設計)中的能效更高。

SiC器件需要18至20伏的門極電壓驅動,導通具有低導通電阻的器件。標準的Si MOSFET只需要不到10伏的門極就能完全導通。此外,SiC器件需要一個-3至-5 V的門極驅動來切換到關斷狀態(tài)。SiC MOSFET在高壓、高電流的能力使它們很適合用于汽車電源電路。在許多應用中,IGBT正在被SiC器件取代。SiC器件可在更高的頻率下開關,從而減少電感或變壓器的尺寸和成本,同時提高能效。此外,SiC可以比GaN處理更大的電流。GaN和SiC器件存在競爭,特別是硅LDMOS MOSFET、超級結MOSFET和IGBT。在許多應用中,正逐漸被GaN和SiC晶體管所取代。

總結GaN與SiC的比較,以下是重點:GaN的開關速度比Si快。SiC工作電壓比GaN更高。SiC需要高的門極驅動電壓。許多功率電路和器件可用GaN和SiC進行設計而得到改善。最大的受益者之一是汽車電氣系統(tǒng)?,F(xiàn)代混合動力車和純電動車含有可使用這些器件的設備。其中一些流行的應用是OBC、DC-DC轉換器、電機驅動器和激光雷達(LiDAR)。圖3指出了電動車中需要高功率開關晶體管的主要子系統(tǒng)。f2b19a98-73be-11ef-bb4b-92fbcf53809c.png圖3. 用于混合動力車和電動車的WBG車載充電器(OBC)。交流輸入經(jīng)過整流、功率因數(shù)校正(PFC),然后進行DC-DC轉換(一個輸出用于給高壓電池充電,另一個用于給低壓電池充電)。DC-DC轉換器。這是個電源電路,將高的電池電壓轉換為較低的電壓,以運行其他電氣設備?,F(xiàn)在電池的電壓范圍高達600伏或900伏。DC-DC轉換器將其降至48伏或12伏,或同時降至48伏和12伏,用于其他電子元件的運行(圖3)。在混合動力電動車和電動車(HEVEVs)中,DC-DC也可用于電池組和逆變器之間的高壓總線。車載充電器(OBCs)。插電式HEVEV和EVs包含一個內(nèi)部電池充電器,可以連接到交流電源上。這樣就可以在家里充電,而不需要外部的AC? DC充電器(圖4)。主驅電機驅動器。主驅電機是高輸出的交流電機,驅動車輛的車輪。驅動器是個逆變器,將電池電壓轉換為三相交流電,使電機運轉。f2e5da9c-73be-11ef-bb4b-92fbcf53809c.png圖4. 一個典型的DC-DC轉換器用于將高電池電壓轉換為12伏和/或48伏。高壓電橋中使用的IGBT正逐漸被SiC MOSFET所取代。由于GaN和SiC晶體管具有高電壓、大電流和快速開關的特點,為汽車電氣設計人員提供了靈活和更簡單的設計以及卓越的性能。

f364511a-73be-11ef-bb4b-92fbcf53809c.png

晟鵬技術(晟鵬科技)研發(fā)的耐高溫200C高導熱絕緣片具有絕緣耐電壓、抗撕裂壓力、韌性強、超薄等特性,垂直導熱系數(shù)3.5W和5W,耐擊穿電壓達到4KV以上,UL-V0阻燃等級使用壽命周期長,滿足變頻家電(空調冰箱)、汽車電子、新能源電池、電力、交通等行業(yè)的需求,低熱阻高導熱氮化硼絕緣片可以快速地把功率器件產(chǎn)生的熱量傳遞到散熱器上。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • SiC
    SiC
    +關注

    關注

    32

    文章

    3474

    瀏覽量

    67994
  • 氮化鎵
    +關注

    關注

    66

    文章

    1854

    瀏覽量

    119174
  • GaN
    GaN
    +關注

    關注

    21

    文章

    2318

    瀏覽量

    79173
  • 碳化硅
    +關注

    關注

    25

    文章

    3282

    瀏覽量

    51695
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    電機定子與線圈絕緣散熱的核心選擇 | 氮化硼PI散熱膜

    在電機運行過程中,定子作為核心部件,其與線圈的絕緣性能和散熱效率直接決定了電機的可靠性、使用壽命與運行效率。氮化硼PI散熱膜憑借氮化硼(BN)優(yōu)異的導熱性能與聚酰亞胺(PI)卓越的
    的頭像 發(fā)表于 12-01 07:22 ?241次閱讀
    電機定子與線圈<b class='flag-5'>絕緣</b>散熱的核心選擇 | <b class='flag-5'>氮化硼</b>PI散熱膜

    碳化硅晶圓特性及切割要點

    01襯底碳化硅襯底是第三代半導體材料中氮化、碳化硅應用的基石。碳化硅襯底以碳化硅粉末為主要原材
    的頭像 發(fā)表于 07-15 15:00 ?844次閱讀
    <b class='flag-5'>碳化硅</b>晶圓特性及切割要點

    基于芯干線氮化碳化硅的100W電源適配器方案

    半導體器件作為現(xiàn)代電子技術的核心元件,廣泛應用于集成電路、消費電子及工業(yè)設備等場景,其性能直接影響智能終端與裝備的運行效能。以氮化GaN)和碳化硅
    的頭像 發(fā)表于 06-05 10:33 ?2275次閱讀
    基于芯干線<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>與<b class='flag-5'>碳化硅</b>的100W電源適配器方案

    基于氮化碳化硅功率MOSFET高頻諧振柵極驅動器

    對于碳化硅(SiC)或氮化(GaN)等寬禁帶(WBG)功率器件而言,優(yōu)化的柵極驅動尤為重要。此類轉換器的快速開關需仔細考量寄生參數(shù)、過沖/
    的頭像 發(fā)表于 05-08 11:08 ?1002次閱讀
    基于<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>的<b class='flag-5'>碳化硅</b>功率MOSFET高頻諧振柵極驅動器

    氮化硼導熱絕緣 | 車載充電橋OBC應用

    晟鵬公司研發(fā)的氮化硼導熱絕緣憑借其導熱性、耐高壓及輕量化等特性,在電動汽車OBC車載充電橋I
    的頭像 發(fā)表于 04-30 18:17 ?586次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>導熱</b><b class='flag-5'>絕緣</b><b class='flag-5'>片</b> | 車載充電橋OBC應用

    除了安森美CREE等還有哪些在美國境內(nèi)流SiC碳化硅器件品牌

    管,SiC碳化硅MOSFET模塊,碳化硅SiC-MOSFET,氮化
    的頭像 發(fā)表于 04-14 05:58 ?896次閱讀

    “六邊形戰(zhàn)士”絕緣TIM材料 | 氮化硼

    引言:氮化硼,散熱界的“六邊形戰(zhàn)士”氮化硼材料的導熱+強絕緣,完美適配5G射頻芯片、新能源電池、半導體封裝等高功率場景,是高性能
    的頭像 發(fā)表于 04-05 08:20 ?982次閱讀
    “六邊形戰(zhàn)士”<b class='flag-5'>絕緣</b>TIM材料 | <b class='flag-5'>氮化硼</b>

    為什么碳化硅Cascode JFET 可以輕松實現(xiàn)硅到碳化硅的過渡?

    電力電子器件高度依賴于硅(Si)、碳化硅SiC)和氮化電子遷移率晶體管(GaN HEMT)
    發(fā)表于 03-12 11:31 ?834次閱讀
    為什么<b class='flag-5'>碳化硅</b>Cascode JFET 可以輕松實現(xiàn)硅到<b class='flag-5'>碳化硅</b>的過渡?

    氮化硼散熱材料大幅度提升氮化快充效能

    什么是氮化GaN)充電頭?氮化充電頭是一種采用氮化
    的頭像 發(fā)表于 02-26 04:26 ?1003次閱讀
    <b class='flag-5'>氮化硼</b>散熱材料大幅度提升<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充效能

    納微半導體氮化碳化硅技術進入戴爾供應鏈

    近日,GaNFast氮化功率芯片和GeneSiC碳化硅功率器件的行業(yè)領導者——納微半導體(納斯達克股票代碼:NVTS)今日宣布其氮化
    的頭像 發(fā)表于 02-07 13:35 ?1108次閱讀
    納微半導體<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>和<b class='flag-5'>碳化硅</b>技術進入戴爾供應鏈

    碳化硅材料的特性和優(yōu)勢

    的基本特性 高硬度和耐磨性 :SiC的硬度非常,僅次于金剛石和立方氮化硼,這使得它在磨料和耐磨涂層中非常有用。 高熱導率 :SiC的熱導率比許多其他陶瓷材料都要高,這使得它在需要快速
    的頭像 發(fā)表于 01-23 17:11 ?2434次閱讀

    為什么650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化器件?

    650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化器件
    的頭像 發(fā)表于 01-23 16:27 ?1635次閱讀
    為什么650V <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET全面取代超結MOSFET和高壓<b class='flag-5'>GaN</b><b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>器件?

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN!

    BASiC基本半導體40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN! BASiC基本半導體40mR/650V SiC
    發(fā)表于 01-22 10:43

    2025年功率半導體行業(yè):五大關鍵趨勢洞察

    趨勢一:碳化硅SiC)與氮化GaN)大放異彩 在功率半導體領域,碳化硅
    的頭像 發(fā)表于 01-08 16:32 ?4834次閱讀

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為功率、高頻應用中的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性能和使用壽命
    發(fā)表于 01-04 12:37