chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

生成式 AI 重塑自動(dòng)駕駛仿真:4D 場景生成技術(shù)的突破與實(shí)踐

康謀自動(dòng)駕駛 ? 2025-08-06 11:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,伴隨自動(dòng)駕駛技術(shù)的快速發(fā)展,行業(yè)對于仿真測試平臺精度、覆蓋率可擴(kuò)展性提出了更高要求。尤其在數(shù)據(jù)閉環(huán)迭代、長尾場景驗(yàn)證及安全冗余驗(yàn)證等關(guān)鍵環(huán)節(jié)中,高保真、高復(fù)雜度場景生成能力正在成為測試體系的核心支撐。

傳統(tǒng)場景生成方式面臨效率低、人工成本高、行為多樣性不足等問題,難以滿足當(dāng)前智能駕駛系統(tǒng)對大規(guī)模、多模態(tài)、真實(shí)物理驅(qū)動(dòng)場景的需求。為應(yīng)對這一挑戰(zhàn),基于生成式AI的4D場景生成技術(shù)迅速興起,構(gòu)建了從環(huán)境建模、行為重建到視覺渲染的完整鏈條,正在重塑自動(dòng)駕駛仿真驗(yàn)證的技術(shù)基礎(chǔ)。

本文將從技術(shù)背景、系統(tǒng)能力、核心技術(shù)實(shí)際應(yīng)用四個(gè)方面,系統(tǒng)梳理AI驅(qū)動(dòng)的4D場景生成體系及其在自動(dòng)駕駛仿真中的實(shí)踐價(jià)值。

一、測試覆蓋率瓶頸與生成式AI切入點(diǎn)

自動(dòng)駕駛測試需要應(yīng)對極其復(fù)雜的交通場景,包括非結(jié)構(gòu)化路口、弱交通規(guī)則區(qū)域、極端天氣、低照度場景,以及多主體交互引發(fā)的不確定性行為等。當(dāng)前基于真實(shí)數(shù)據(jù)采集手工建模的方式存在如下限制

(1)采集成本高:依賴實(shí)車、實(shí)景、多模態(tài)同步設(shè)備,周期長、數(shù)據(jù)稀疏;

(2)稀有場景不足:事故場景、異常行為等真實(shí)比例極低,難以高質(zhì)量復(fù)現(xiàn);

(3)組合爆炸問題:參數(shù)空間(如天氣、時(shí)間、交通密度)指數(shù)級增長,難以人工覆蓋;

(4)場景可控性弱:缺乏可調(diào)控的語義接口,測試粒度不足。

生成式AI具備從數(shù)據(jù)中學(xué)習(xí)潛在分布、生成新組合樣本的能力。其引入使得場景構(gòu)建從“手工定義”轉(zhuǎn)向“自動(dòng)生成”,具備如下優(yōu)勢

(1)能構(gòu)造真實(shí)但未見過的長尾組合;

(2)能對目標(biāo)測試策略進(jìn)行定向增強(qiáng)(如遮擋率、交通密度等指標(biāo));

(3)可支持大規(guī)模仿真測試平臺的持續(xù)供場;

(4)支持動(dòng)態(tài)交互與時(shí)間演進(jìn)建模,構(gòu)建完整4D語義閉環(huán)。

二、4D場景生成的核心能力

所謂4D場景生成,核心在于“空間 + 時(shí)間”的聯(lián)合建模能力,既要對物理環(huán)境建模,也要對場景中各類參與者的行為軌跡進(jìn)行動(dòng)態(tài)建模與演化。典型的系統(tǒng)能力包括:

(1)幾何/語義重建能力:生成準(zhǔn)確的道路、建筑、交通設(shè)施等結(jié)構(gòu)化環(huán)境,并附帶完整語義標(biāo)簽;

(2)多主體行為建模能力:生成車輛、行人、非機(jī)動(dòng)車的時(shí)序軌跡,滿足行為邏輯與交互合理性;

(3)高保真視覺建模能力:輸出具備真實(shí)紋理、光照與傳感器特性的圖像序列;

(4)物理一致性約束能力:保持交通規(guī)則、實(shí)體尺寸、運(yùn)動(dòng)學(xué)約束等基本物理一致性;

(5)模態(tài)可控能力:支持控制場景的天氣、時(shí)間、視角、密度、行為模式等關(guān)鍵參數(shù)。

在不同技術(shù)路徑中,上述能力往往由多個(gè)模塊聯(lián)合實(shí)現(xiàn),從數(shù)據(jù)驅(qū)動(dòng)的軌跡預(yù)測模型,到神經(jīng)渲染網(wǎng)絡(luò),再到多模態(tài)融合仿真接口,共同構(gòu)成完整的4D場景生成流水線

三、核心技術(shù)解析

1、Neural Radiance Fields(NeRF

NeRF是一種基于神經(jīng)網(wǎng)絡(luò)的體積渲染方法,通過對空間點(diǎn)位置與觀察方向的編碼,學(xué)習(xí)輸出每個(gè)點(diǎn)的顏色與密度,實(shí)現(xiàn)高質(zhì)量的三維重建與新視角圖像合成。

(1)技術(shù)特點(diǎn)

- 具備極高的渲染保真度;

- 支持任意視角合成,適用于多視圖重建任務(wù);

- 對遮擋、反射、透明等復(fù)雜視覺效果建模能力強(qiáng)。

(2)局限性

- 訓(xùn)練效率低,渲染速度慢;

- 不原生支持動(dòng)態(tài)場景;

- 依賴多視角密集數(shù)據(jù)輸入。

NeRF更適合作為小規(guī)模高精重建模塊,用于城市局部區(qū)域或典型交互區(qū)域建模。

wKgZPGiSyUCAdxC6AAPtmFlaVXU282.png

EmerNeRF的自動(dòng)駕駛場景重建真值/渲染值對比

2、3D Gaussian Splatting(3DGS)

3D Gaussian Splatting是近年來提出的高效神經(jīng)渲染方法,由 Inria 團(tuán)隊(duì)于 2023 年發(fā)布。它采用高斯分布建模離散點(diǎn)云,在屏幕空間進(jìn)行潑濺(splatting)操作,從而實(shí)現(xiàn)對三維場景的實(shí)時(shí)渲染。不同于 NeRF 使用體積積分的方式,3DGS 將空間中的顏色和密度建模為可渲染的高斯球體,渲染效率顯著提升。

主要優(yōu)勢包括:

(1)極高的渲染效率:相比 NeRF 快數(shù)百倍,可實(shí)現(xiàn)實(shí)時(shí)或近實(shí)時(shí)的圖像合成;

(2)訓(xùn)練速度快:幾十秒到幾分鐘即可完成一個(gè)中等規(guī)模場景的建模;

(3)結(jié)構(gòu)緊湊,易于部署:渲染結(jié)構(gòu)不依賴深度網(wǎng)絡(luò)推理,適合本地仿真引擎嵌入;

(4)視覺質(zhì)量優(yōu)異:保留了 NeRF 的軟陰影、光照過渡與遮擋關(guān)系等特性。

在自動(dòng)駕駛仿真系統(tǒng)中,3DGS可用于從多視角圖像或視頻中重建真實(shí)道路場景,為感知模型提供高保真圖像合成能力,適用于傳感器回放、虛擬重構(gòu)、數(shù)據(jù)增強(qiáng)等場景,是當(dāng)前神經(jīng)渲染領(lǐng)域中效率與質(zhì)量兼具的重要方案之一。

wKgZO2iSyV2AJ9U0AALrhrp1Wwk539.png

基于3DGS的S3Gaussian算法提出的重建流程

3、log2world:從實(shí)采數(shù)據(jù)到虛擬世界的橋梁

log2world是一種將自動(dòng)駕駛原始數(shù)據(jù)(如ROS bag、CAN log、傳感器幀)自動(dòng)轉(zhuǎn)化為可視、可交互仿真場景的工具鏈。主要功能包括:

(1)根據(jù)IMU與GNSS數(shù)據(jù)還原車輛軌跡;

(2)使用圖像與點(diǎn)云重建環(huán)境幾何與紋理;

(3)提取行為序列并重建動(dòng)態(tài)參與者;

(4)輸出統(tǒng)一格式場景文件,支持仿真平臺直接加載(如Unreal、CARLA、LGSVL等)。

log2world顯著降低了真實(shí)場景數(shù)字化與復(fù)現(xiàn)成本,是構(gòu)建基于真實(shí)行為數(shù)據(jù)的4D測試場景的重要手段。

wKgZPGiSyWmAUiLyAABRVxWmaIc720.png

用于Log2World仿真的流程示例(IVEX+aiSim)

四、應(yīng)用場景與系統(tǒng)集成實(shí)踐

生成式AI+4D場景生成技術(shù)目前已在以下典型場景中形成落地:

(1)閉環(huán)驗(yàn)證系統(tǒng):自動(dòng)識別模型薄弱場景,動(dòng)態(tài)生成補(bǔ)全,形成仿真-訓(xùn)練-驗(yàn)證閉環(huán);

(2)多模態(tài)數(shù)據(jù)生成引擎:結(jié)合仿真接口輸出RGB圖像、深度圖、點(diǎn)云、語義標(biāo)簽等,用于感知模型訓(xùn)練;

(3)長尾用例擴(kuò)增:生成特定條件組合下的稀有事件,如夜間施工、交通事故、人車混行等;

(4)仿真平臺集成:與CARLA、Unreal、aiSim等平臺對接,作為自動(dòng)構(gòu)圖/行為驅(qū)動(dòng)模塊使用;

(5)城市級數(shù)字孿生:快速還原城區(qū)典型路段結(jié)構(gòu)及交通特征,支持區(qū)域智能交通仿真與決策測試。

五、結(jié)語

未來,隨著大模型融合語義驅(qū)動(dòng)生成(如Prompt-to-Scene)、行為軌跡生成器與語義控制接口集成、生成內(nèi)容與實(shí)車反饋協(xié)同優(yōu)化機(jī)制的發(fā)展,AI生成的4D場景將成為自動(dòng)駕駛數(shù)據(jù)體系中的基礎(chǔ)設(shè)施,為模型迭代、安全驗(yàn)證與持續(xù)運(yùn)營提供核心支撐。

4D場景生成技術(shù)正從研究階段走向規(guī)模應(yīng)用,構(gòu)建出兼顧真實(shí)性、復(fù)雜性與效率的場景生成能力,是實(shí)現(xiàn)自動(dòng)駕駛系統(tǒng)仿真閉環(huán)與持續(xù)優(yōu)化的關(guān)鍵引擎。

生成式AI正逐步承擔(dān)起從世界建模者到智能驗(yàn)證者的角色,其影響力正在由測試階段擴(kuò)展至研發(fā)、訓(xùn)練、部署等完整流程??梢灶A(yù)見,未來的自動(dòng)駕駛系統(tǒng)開發(fā),將越來越依賴于這一類“生成驅(qū)動(dòng)的智能仿真基礎(chǔ)設(shè)施”。


▍參考文獻(xiàn)

1.EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision

2.S3Gaussian: Self-Supervised Street Gaussians for Autonomous Driving

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 建模
    +關(guān)注

    關(guān)注

    1

    文章

    319

    瀏覽量

    62182
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    36980

    瀏覽量

    289814
  • 仿真測試
    +關(guān)注

    關(guān)注

    0

    文章

    104

    瀏覽量

    11697
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    791

    文章

    14540

    瀏覽量

    173763
  • 汽車
    +關(guān)注

    關(guān)注

    15

    文章

    3984

    瀏覽量

    40393
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    擁抱自動(dòng)駕駛,4D成像毫米波雷達(dá)已悄然崛起!

    擁抱自動(dòng)駕駛,4D成像毫米波雷達(dá)已悄然崛起! ? 電子發(fā)燒友網(wǎng)報(bào)道(文/李誠)在汽車領(lǐng)域,自動(dòng)駕駛是汽車智能化發(fā)展的最終方向。毫米波雷達(dá)傳感器是目前汽車領(lǐng)域最成熟的技術(shù)之一,也是使用頻
    的頭像 發(fā)表于 01-12 09:37 ?8218次閱讀

    康謀分享 | 3DGS:革新自動(dòng)駕駛仿真場景重建的關(guān)鍵技術(shù)

    3DGS技術(shù)自動(dòng)駕駛仿真場景重建帶來突破,通過3D高斯點(diǎn)精確表達(dá)復(fù)雜
    的頭像 發(fā)表于 03-05 09:45 ?4192次閱讀
    康謀分享 | 3DGS:革新<b class='flag-5'>自動(dòng)駕駛</b><b class='flag-5'>仿真</b><b class='flag-5'>場景</b>重建的關(guān)鍵<b class='flag-5'>技術(shù)</b>

    FPGA+AI王炸組合如何重塑未來世界:看看DeepSeek東方神秘力量如何預(yù)測......

    突破40%;數(shù)據(jù)中心加速卡市場復(fù)合增長率達(dá)34%...... 2. 萬億級市場的四大賽道1) 智能駕駛新基建:單輛L4自動(dòng)駕駛車搭載12-16片F(xiàn)PGA;動(dòng)態(tài)可重構(gòu)
    發(fā)表于 03-03 11:21

    AI/自動(dòng)駕駛領(lǐng)域的巔峰會議—國際AI自動(dòng)駕駛高峰論壇

    已經(jīng)滲透到了社會生活的方方面面。人工智能在自動(dòng)駕駛領(lǐng)域?qū)φ麄€(gè)汽車出行領(lǐng)域產(chǎn)生顛覆性變革。汽車的人工智能技術(shù)和數(shù)據(jù)后端的最新突破使自動(dòng)駕駛成為可能。深度學(xué)習(xí)、高級數(shù)字助理和動(dòng)態(tài)電子視野
    發(fā)表于 09-13 13:59

    UWB主動(dòng)定位系統(tǒng)在自動(dòng)駕駛中的應(yīng)用實(shí)踐

    2、決策能力由于路測公里數(shù)不足受限3、對執(zhí)行控制層的把握不足4、缺乏合格的AI 芯片。因此為自動(dòng)駕駛技術(shù)的應(yīng)用限定一個(gè)區(qū)域,也許是工程師們踩過無數(shù)坑后得出的最符合嘗試且最節(jié)省成本的方法
    發(fā)表于 12-14 17:30

    自動(dòng)駕駛AI芯片現(xiàn)狀分析

    自動(dòng)駕駛AI芯片到位了么?
    發(fā)表于 12-04 06:13

    自動(dòng)駕駛車輛中AI面臨的挑戰(zhàn)

    自動(dòng)駕駛車輛中采用的AI算法自動(dòng)駕駛車輛中AI面臨的挑戰(zhàn)
    發(fā)表于 02-22 06:39

    【KV260視覺入門套件試用體驗(yàn)】八、VITis AI自動(dòng)駕駛多任務(wù)執(zhí)行MultiTask V3

    d58cbda2-97976be7__640x360.avi MultiTask V3 旨在同時(shí)執(zhí)行自動(dòng)駕駛場景中的不同任務(wù),同時(shí)實(shí)現(xiàn)優(yōu)異的性能和效率。這些任務(wù)包括對象檢測、分 割、車道檢測、可行駛區(qū)域分割和深度估算,這些
    發(fā)表于 09-26 16:43

    4D成像雷達(dá)是實(shí)現(xiàn)L4自動(dòng)駕駛的關(guān)鍵技術(shù)

    如果沒有4D成像雷達(dá)的幫助,光學(xué)傳感器并不能達(dá)到Level 4和Level 5級自動(dòng)駕駛。
    的頭像 發(fā)表于 09-07 10:19 ?7735次閱讀

    Deepen AI開發(fā)融合傳感器數(shù)據(jù)4D語義分割

    初創(chuàng)公司Deepen AI由前谷歌工程師和產(chǎn)品經(jīng)理創(chuàng)建,開發(fā)用于自動(dòng)駕駛系統(tǒng)的人工智能和注釋工具。據(jù)外媒報(bào)道,目前該公司正在開發(fā)最新的激光雷達(dá)和融合傳感器數(shù)據(jù)4D語義分割,并聲稱能夠生成
    發(fā)表于 05-26 11:13 ?1480次閱讀

    生成AI重塑汽車生產(chǎn)流程,開啟汽車行業(yè)新時(shí)代

    除了汽車產(chǎn)品的生命周期,生成 AI 還為自動(dòng)駕駛汽車(AV)的開發(fā)帶來了新的研究突破,比如使用神經(jīng)輻射場(NeRF)
    的頭像 發(fā)表于 08-22 15:16 ?1504次閱讀
    <b class='flag-5'>生成</b><b class='flag-5'>式</b><b class='flag-5'>AI</b><b class='flag-5'>重塑</b>汽車生產(chǎn)流程,開啟汽車行業(yè)新時(shí)代

    4DGen:基于動(dòng)態(tài)3D高斯的可控4D生成新工作

    盡管3D和視頻生成取得了飛速的發(fā)展,由于缺少高質(zhì)量的4D數(shù)據(jù)集,4D生成始終面臨著巨大的挑戰(zhàn)。
    的頭像 發(fā)表于 01-04 15:57 ?1818次閱讀
    <b class='flag-5'>4</b>DGen:基于動(dòng)態(tài)3<b class='flag-5'>D</b>高斯的可控<b class='flag-5'>4D</b><b class='flag-5'>生成</b>新工作

    博世與微軟合作開發(fā)生成AI產(chǎn)品,強(qiáng)化自動(dòng)駕駛功能與車輛安全性

    近日,全球知名的技術(shù)公司博世與微軟宣布了一項(xiàng)重要的合作計(jì)劃,雙方將聯(lián)手開發(fā)生成AI生成人工
    的頭像 發(fā)表于 03-04 11:23 ?1321次閱讀

    Waabi使用生成AI大規(guī)模地交付自動(dòng)駕駛汽車

    總部位于多倫多的初創(chuàng)公司 Waabi 正在使用生成 AI 大規(guī)模地交付自動(dòng)駕駛汽車,首先應(yīng)用的是長途卡車運(yùn)輸業(yè)。
    的頭像 發(fā)表于 08-23 15:44 ?1044次閱讀

    恩智浦4D成像雷達(dá)如何助力自動(dòng)駕駛發(fā)展

    4D成像雷達(dá)憑借卓越的精度、可擴(kuò)展性和彈性,正在重新定義汽車傳感技術(shù)4D成像雷達(dá)在全球的部署不斷加速,是實(shí)現(xiàn)自動(dòng)駕駛的關(guān)鍵基石。
    的頭像 發(fā)表于 09-09 17:01 ?956次閱讀