我的母親是一名護(hù)士,目前已經(jīng)退休。她是一個(gè)非常聰明的人,對(duì)自己的工作業(yè)務(wù)非常的盡職盡責(zé)。幾天前我和她說我正在研究Imagination最新的神經(jīng)網(wǎng)絡(luò)加速器,她詫異的說:你說的是什么意思?,當(dāng)然只有
2018-06-19 18:36:17
6016 
引言 神經(jīng)網(wǎng)絡(luò)中涉及到大量的張量運(yùn)算,比如卷積,矩陣乘法,向量點(diǎn)乘,求和等。神經(jīng)網(wǎng)絡(luò)加速器就是針對(duì)張量運(yùn)算來設(shè)計(jì)的。一個(gè)神經(jīng)網(wǎng)絡(luò)加速器通常都包含一個(gè)張量計(jì)算陣列,以及數(shù)據(jù)收發(fā)控制,共同來完成諸如矩陣
2020-11-02 13:52:51
3649 
隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了卷積神經(jīng)網(wǎng)絡(luò)(CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提取特征的強(qiáng)大工具,例如識(shí)別音頻信號(hào)或圖像信號(hào)中的復(fù)雜模式就是其應(yīng)用之一。
2023-09-05 10:23:27
2538 人工神經(jīng)網(wǎng)絡(luò)在傳感器數(shù)據(jù)融合中的應(yīng)用針對(duì)壓力傳感器對(duì)溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對(duì)其進(jìn)行數(shù)據(jù)融合處理,消除溫度對(duì)壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
的基本處理單元,它是神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)基礎(chǔ)。神經(jīng)元是以生物的神經(jīng)系統(tǒng)的神經(jīng)細(xì)胞為基礎(chǔ)的生物模型。在人們對(duì)生物神經(jīng)系統(tǒng)進(jìn)行研究,以探討人工智能的機(jī)制時(shí),把神經(jīng)元數(shù)學(xué)化,從而產(chǎn)生了神經(jīng)元數(shù)學(xué)模型。因此,要了解人工神經(jīng)模型就必須先了解生物神經(jīng)元模型。`
2018-10-23 16:16:02
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
人工智能芯片是指什么?AI芯片按照應(yīng)用場(chǎng)景可以分為哪幾種?
2021-10-25 07:29:05
什么是人工智能(AI)芯片?AI芯片的主要用處有哪些?在AI任務(wù)中,AI芯片到底有多大優(yōu)勢(shì)?
2021-09-22 08:00:01
`我思故我在 亮出你的觀點(diǎn)自從類神經(jīng)網(wǎng)絡(luò)算法可以用強(qiáng)大的運(yùn)算能力加以模擬之后,強(qiáng)人工智能才開始出現(xiàn)。即便如此,以目前 CPU 的運(yùn)算能力來講,模擬類神經(jīng)網(wǎng)絡(luò)算法的代價(jià)非常之大,于是有人想到了用
2017-08-23 15:42:16
點(diǎn)擊上方“藍(lán)字”,關(guān)注我們,感謝!人工智能(AI)以及利用神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)是實(shí)現(xiàn)高級(jí)駕駛輔助系統(tǒng)(ADAS)和更高程度車輛自主性的強(qiáng)大技術(shù)。隨著人工智能研究的快速發(fā)展,設(shè)計(jì)人員正面臨激烈的競(jìng)爭(zhēng)
2021-12-17 08:17:41
人工智能是近三年來最受關(guān)注的核心基礎(chǔ)技術(shù),將深刻的改造各個(gè)傳統(tǒng)行業(yè)。人工智能在圖像識(shí)別、語音識(shí)別領(lǐng)域的應(yīng)用自2017年來高速發(fā)展,是人工智能最熱點(diǎn)的兩項(xiàng)落地應(yīng)用。手把手教你設(shè)計(jì)人工智能芯片及系統(tǒng)(全
2019-09-11 11:52:08
,路徑規(guī)劃和異常檢測(cè),以及用于在這些引擎上部署機(jī)器學(xué)習(xí)模型(包括神經(jīng)網(wǎng)絡(luò)和經(jīng)典機(jī)器學(xué)習(xí)算法)的平臺(tái)和工具的集成。這只是第一步,因?yàn)槎髦瞧忠呀?jīng)在努力將可擴(kuò)展的人工智能加速器集成到其設(shè)備中,這將使機(jī)器學(xué)習(xí)
2019-05-29 10:46:39
最近在看人工智能神經(jīng)網(wǎng)絡(luò)存算一體這些方面的ADC設(shè)計(jì)方向,貌似跟一般的ADC方向是一樣的,都是希望朝著低功耗高精度和高速發(fā)展,在這幾個(gè)或其他特殊的方向各位有什么見解呢?
2021-06-24 08:17:34
近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對(duì)超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14
,本次也迎來重大更新套件--兼容支持Mac及Windows開發(fā)環(huán)境。剛剛量產(chǎn)發(fā)布的Al人工智能計(jì)算棒基于RK1808芯片,定位于深度學(xué)習(xí)工具和獨(dú)立的人工智能(Al)加速器,開發(fā)者不再需要
2022-08-15 17:53:47
“人工智能芯片”。原本我們認(rèn)為的CPU就是一堆好用的電路的集合,我們將這些常用好用的集成電路中添加一個(gè)神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)電路,就成了另一個(gè)噱頭。 原本就成熟的芯片設(shè)計(jì)工藝和技術(shù),加上原本就成熟的所謂
2018-08-24 10:36:53
人工智能 (AI) 將改變世界。但要實(shí)現(xiàn)其潛力,我們將不得不改變?cè)O(shè)計(jì)計(jì)算系統(tǒng)的方式。諸如在云中訓(xùn)練神經(jīng)網(wǎng)絡(luò)或在邊緣實(shí)時(shí)執(zhí)行模式識(shí)別等任務(wù)將需要專門的片上系統(tǒng) (SoC),最終需要針對(duì)獨(dú)特的功率、性能
2022-03-29 14:40:21
FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44
FPGA(現(xiàn)場(chǎng)可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面:
一、深度學(xué)習(xí)加速
訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
2024-07-29 17:05:30
請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
,如有錯(cuò)誤還望大佬們指出,我馬上改正。
目錄和進(jìn)度
目前閱讀到第一章,先更新到第一章的內(nèi)容吧
卷積神經(jīng)網(wǎng)絡(luò)
運(yùn)算子系統(tǒng)的設(shè)計(jì)
儲(chǔ)存子系統(tǒng)的設(shè)計(jì)
架構(gòu)優(yōu)化技術(shù)
安全與防護(hù)
神經(jīng)網(wǎng)絡(luò)加速器的實(shí)現(xiàn)
2023-09-16 11:11:01
對(duì)應(yīng)的神經(jīng)網(wǎng)絡(luò)有哪些,也看到了自己在k210中用到的FAST RCNN和RestNet18分類網(wǎng)絡(luò),需要保證硬件實(shí)現(xiàn)和算法一致,這樣才事半功倍,否則,可能會(huì)差別比較大。對(duì)于神經(jīng)網(wǎng)絡(luò)算法的執(zhí)行,加速器
2023-09-11 20:34:01
,隨機(jī)森林,K-均值算法,支持向量機(jī)和人工神經(jīng)網(wǎng)絡(luò)等等。在應(yīng)用方面表現(xiàn)也異常突出,目前89%的人工智能專利申請(qǐng)和40%人工智能范圍相關(guān)專利都屬于機(jī)器學(xué)習(xí)的范疇,可見機(jī)器學(xué)習(xí)的時(shí)代化進(jìn)程多么迅速。歸結(jié)到
2023-02-17 11:00:15
`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機(jī)器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測(cè)、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達(dá)訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39
項(xiàng)目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計(jì)劃:申請(qǐng)理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實(shí)現(xiàn)圖像的快速處理項(xiàng)目計(jì)劃:1、在PC端實(shí)現(xiàn)Lnet網(wǎng)絡(luò)的訓(xùn)練
2018-12-19 11:37:22
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
NPU架構(gòu)合二為一,總結(jié)并提煉出本書內(nèi)容。本書主要討論神經(jīng)網(wǎng)絡(luò)硬件層面,尤其是芯片設(shè)計(jì)層面的內(nèi)容,主要包含神經(jīng)網(wǎng)絡(luò)的分析、神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計(jì)以及具體實(shí)現(xiàn)技術(shù)。通過閱讀本書,讀者可以深入了解主流
2023-07-28 10:50:51
是一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競(jìng)爭(zhēng),每一時(shí)刻只有一個(gè)競(jìng)爭(zhēng)獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識(shí)別層、識(shí)別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)基礎(chǔ)。神經(jīng)元是以生物的神經(jīng)系統(tǒng)的神經(jīng)細(xì)胞為基礎(chǔ)的生物模型。在人們對(duì)生物神經(jīng)系統(tǒng)進(jìn)行研究,以探討人工智能的機(jī)制時(shí),把神經(jīng)元數(shù)學(xué)化,從而產(chǎn)生了神經(jīng)元數(shù)學(xué)模型。因此,要了解人工神經(jīng)模型就必須
2023-09-13 16:41:18
` 誰來闡述一下傳感器和人工智能的關(guān)系?手把手教你設(shè)計(jì)人工智能芯片及系統(tǒng)(全階設(shè)計(jì)教程+AI芯片FPGA實(shí)現(xiàn)+開發(fā)板)詳情鏈接:http://url.elecfans.com/u/c422a4bd15`
2019-11-25 15:51:45
神經(jīng)網(wǎng)絡(luò)研究的第一次浪潮。1969 年美國數(shù)學(xué)家及人工智能先驅(qū) Minsky在其著作中證 明感知器本質(zhì)上是一種線性模型[21],只能處理線性分 類問題,最簡單的異或問題都無法正確分類,因此神 經(jīng)網(wǎng)絡(luò)的研究也
2022-08-02 10:39:39
抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10
摘 要:本文給出了采用ADXL335加速度傳感器來采集五個(gè)手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢(shì)特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來實(shí)現(xiàn)手勢(shì)識(shí)別的設(shè)計(jì)方法
2018-11-13 16:04:45
FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41
已經(jīng)有很多關(guān)于將人工智能用于日益智能的車輛的文章。但是,您如何將在服務(wù)器群上開發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車生產(chǎn) AI 研發(fā)工程師在
2021-12-23 06:30:50
如何使單片機(jī)與無線供電結(jié)合,從而使人工智能脫離電池和線路
2023-10-31 06:34:05
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24
人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30
人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27
已經(jīng)有很多關(guān)于將人工智能用于日益智能的車輛的文章。但是,您如何將在服務(wù)器群上開發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車生產(chǎn) AI 研發(fā)工程師在
2021-11-08 07:18:10
與人工智能的結(jié)合,無疑是科技發(fā)展中的一場(chǎng)革命。在人工智能硬件加速中,嵌入式系統(tǒng)以其獨(dú)特的優(yōu)勢(shì)和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)等算法,嵌入式系統(tǒng)能夠高效地處理大量數(shù)據(jù),從而實(shí)現(xiàn)
2024-11-14 16:39:22
本文提出了一個(gè)基于FPGA 的信息處理的實(shí)例:一個(gè)簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號(hào)同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07
人工神經(jīng)網(wǎng)絡(luò)在很多領(lǐng)域得到了很好的應(yīng)用,尤其是具有分布存儲(chǔ)、并行處理、自學(xué)習(xí)、自組織以及非線性映射等特點(diǎn)的網(wǎng)絡(luò)應(yīng)用更加廣泛。嵌入式便攜設(shè)備也越來越多地得到應(yīng)用,多數(shù)是基于ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列
2019-09-20 06:15:20
隨著Google、Microsoft和Facebook等巨頭的大力投入,深度學(xué)習(xí)正在超越機(jī)器學(xué)習(xí),人工智能來勢(shì)兇猛。那么,如今人工智能最熱門的技術(shù)趨勢(shì)是什么?黑匣認(rèn)為,復(fù)雜神經(jīng)網(wǎng)絡(luò)、LSTMs(長短
2015-12-23 14:21:58
自我調(diào)節(jié)的意識(shí)。我們的合作伙伴實(shí)現(xiàn)了算法和相關(guān)技術(shù)并理解如何將這些應(yīng)用到實(shí)際產(chǎn)品中,我們的任務(wù)是創(chuàng)建硬件加速器用于人工智能的計(jì)算學(xué)習(xí),保證大量數(shù)據(jù)輸入時(shí)能夠做出實(shí)時(shí)的反應(yīng)。舉個(gè)例子,在自動(dòng)駕駛汽車中如果
2018-05-22 09:54:43
Markit預(yù)計(jì)從2018年到2025年,網(wǎng)絡(luò)邊緣將有400億IoT設(shè)備,且在未來5-10年內(nèi),諸如IoT、基于人工智能的網(wǎng)絡(luò)邊緣計(jì)算和云分析等變革性技術(shù)的融合將顛覆所有行業(yè),并培育新的商業(yè)機(jī)會(huì)
2018-05-23 15:31:04
隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13
人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論依照簡明易懂、便于軟件實(shí)現(xiàn)、鼓勵(lì)探索的原則介紹人工神經(jīng)網(wǎng)絡(luò)。內(nèi)容包括:智能系統(tǒng)描述模型、人工神經(jīng)網(wǎng)絡(luò)方法的特點(diǎn);基本人工神經(jīng)元模型,人工神經(jīng)
2009-01-13 14:58:57
63 人工智能識(shí)別打架和霸凌行為監(jiān)測(cè)系統(tǒng)基于神經(jīng)網(wǎng)絡(luò)人工智能視覺算法,人工智能識(shí)別打架和霸凌行為監(jiān)測(cè)系統(tǒng)利用已經(jīng)裝好的攝像頭對(duì)監(jiān)控區(qū)域進(jìn)行實(shí)時(shí)視頻監(jiān)測(cè)。系統(tǒng)通過神經(jīng)網(wǎng)絡(luò)人工智能視覺算法分析視頻圖像
2024-09-03 22:52:39
將 人工神經(jīng)網(wǎng)絡(luò) 模型應(yīng)用于天線設(shè)計(jì)中,可以提高天線設(shè)計(jì)的效率和精度。人工神經(jīng)網(wǎng)絡(luò)一旦被訓(xùn)練成功,再次使用其進(jìn)行天線設(shè)計(jì)時(shí),可以充分發(fā)揮神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)和泛化能力,提高
2011-06-22 16:42:16
67 隨著消費(fèi)電子、汽車電子、工業(yè)控制等越來越多的應(yīng)用引入人工智能(AI),人工智能面臨著前所未有的快速發(fā)展,深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等技術(shù)迎來了發(fā)展高潮。神經(jīng)網(wǎng)絡(luò)越大,需要的計(jì)算量就越大,傳統(tǒng)的VPU雖然也能
2018-07-16 11:17:00
791 人工智能機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,人工智能之機(jī)器學(xué)習(xí)主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點(diǎn)探討一下卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法。 前言: 人工智能 機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,請(qǐng)參見公眾號(hào)
2018-06-18 10:15:00
5812 Imagination Technologies宣布推出其面向人工智能(AI)應(yīng)用的最新神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR Series3NX。
2018-12-06 16:09:32
3898 什么是人工智能神經(jīng)網(wǎng)絡(luò),大腦的結(jié)構(gòu)越簡單,那么智商就越低。單細(xì)胞生物是智商最低的了。人工神經(jīng)網(wǎng)絡(luò)也是一樣的,網(wǎng)絡(luò)越復(fù)雜它就越強(qiáng)大,所以我們需要深度神經(jīng)網(wǎng)絡(luò)。這里的深度是指層數(shù)多,層數(shù)越多那么構(gòu)造的神經(jīng)網(wǎng)絡(luò)就越復(fù)雜。
2019-07-04 11:30:24
4348 基于端側(cè)推斷任務(wù)深度神經(jīng)網(wǎng)絡(luò)處理器基準(zhǔn)測(cè)試結(jié)果中,Imagination的神經(jīng)網(wǎng)絡(luò)加速器在多個(gè)框架測(cè)試中成績名列第一!
2019-07-12 15:23:47
5713 神經(jīng)網(wǎng)絡(luò)加速賦能端側(cè)智能
2019-08-08 10:59:51
5233 在人工智能深度學(xué)習(xí)技術(shù)中,有一個(gè)很重要的概念就是卷積神經(jīng)網(wǎng)絡(luò) CNN(Convolutional Neural Networks)。
2019-11-02 11:23:43
4301 隨著許多嵌入式系開始變得智能且自主,以人工智能(AI)神經(jīng)網(wǎng)絡(luò)為導(dǎo)向的嵌入式系統(tǒng)市場(chǎng)即將起飛,神經(jīng)網(wǎng)絡(luò)加速器大戰(zhàn)一觸發(fā)。
2019-11-14 14:16:01
978 隨著許多嵌入式系開始變得智能且自主,以人工智能(AI)神經(jīng)網(wǎng)絡(luò)為導(dǎo)向的嵌入式系統(tǒng)市場(chǎng)即將起飛,神經(jīng)網(wǎng)絡(luò)加速器大戰(zhàn)一觸發(fā)。
2019-11-22 11:40:06
1291 談及人工智能,就會(huì)涉及到人工神經(jīng)網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)是現(xiàn)代人工智能的重要分支,它是一個(gè)為人工智能提供動(dòng)力,可以模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的系統(tǒng)。
2020-07-27 10:25:37
1130 來源:ST社區(qū) GPU和NNA(神經(jīng)網(wǎng)絡(luò)加速器)正在迅速成為AI應(yīng)用的關(guān)鍵要素。隨著不同企業(yè)開始挖掘神經(jīng)網(wǎng)絡(luò)在各種任務(wù)(比如自然語言處理、圖片分類)中的潛力,集成人工智能元素的產(chǎn)品數(shù)量正在穩(wěn)步的增長
2022-12-20 18:25:17
1237 特性,那就意味著即使在將其應(yīng)用在電池供電的物聯(lián)網(wǎng)(IoT)設(shè)備里,芯片性能并未受到影響。 如上圖所示,新芯片MAX78000包括兩個(gè)超低功耗內(nèi)核Arm Cortex-M4內(nèi)核和RISC-V內(nèi)核一個(gè)基于FPU的微控制器和一個(gè)卷積神經(jīng)網(wǎng)絡(luò)加速器。按照他們的說法,之所以他們采用了一個(gè)RISC-V內(nèi)核
2020-10-10 10:27:02
1677 ? ? 新型神經(jīng)網(wǎng)絡(luò)加速器 Maxim Integrated的新型MAX78000芯片,基于雙核MCU,結(jié)合了超低功耗深度神經(jīng)網(wǎng)絡(luò)加速器,為高性能人工智能 (AI) 應(yīng)用提供所需的算力,是機(jī)器視覺
2021-01-04 11:48:49
4201 人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實(shí)現(xiàn)說明。
2021-05-25 11:30:16
12 神經(jīng)網(wǎng)絡(luò)加速器基本概念。
2021-05-27 15:22:59
13 一種基于FPGA的SIM卷積神經(jīng)網(wǎng)絡(luò)加速器架構(gòu)。以YOOV2目標(biāo)檢測(cè)算法為例,介紹了將卷積神經(jīng)網(wǎng)絡(luò)模型映射到FPGA上的完整流程;對(duì)加速器的性能和資源耗費(fèi)進(jìn)行深λ分析和建模,將實(shí)際傳輸延時(shí)考慮在內(nèi),縮小了加速器理論時(shí)延與實(shí)際時(shí)延
2021-05-28 14:00:22
24 汽車正在變得越來越智能,但是如果汽車行業(yè)要實(shí)現(xiàn)完全自動(dòng)駕駛的目標(biāo),他們還有很長的路要走。盡管業(yè)界還在討論實(shí)現(xiàn)全自動(dòng)化所需的理想技術(shù)組合,但是有一點(diǎn)是明確的,那就是人工智能,尤其是神經(jīng)網(wǎng)絡(luò)將發(fā)揮重要作用。
2021-06-23 09:40:59
35 人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-04 10:36:06
14 AI加速器是一類專門的硬件加速器或計(jì)算機(jī)系統(tǒng)旨在加速人工智能的應(yīng)用,主要應(yīng)用于人工智能、人工神經(jīng)網(wǎng)絡(luò)、機(jī)器視覺和機(jī)器學(xué)習(xí)。
2022-02-06 12:47:00
5626 本文重點(diǎn)解釋如何使用硬件轉(zhuǎn)換卷積神經(jīng)網(wǎng)絡(luò)(CNN),并特別介紹使用帶CNN硬件加速器的人工智能(AI)微控制器在物聯(lián)網(wǎng)(IoT)邊緣實(shí)現(xiàn)人工智能應(yīng)用所帶來的好處。 AI應(yīng)用通常需要消耗大量能源,并以
2023-05-16 01:05:03
1905 著重要作用。BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network, BPNN)是人工神經(jīng)網(wǎng)絡(luò)中的一種常見的多層前饋神經(jīng)網(wǎng)絡(luò),
2023-08-22 16:45:18
6057 人工智能芯片是專門為人工智能應(yīng)用而設(shè)計(jì)的硬件芯片,與傳統(tǒng)通用處理器芯片不同,在設(shè)計(jì)上針對(duì)使用在人工智能算法中的貝葉斯網(wǎng)絡(luò)、卷積網(wǎng)絡(luò)、循環(huán)網(wǎng)絡(luò)、深度神經(jīng)網(wǎng)絡(luò)等,優(yōu)化處理器結(jié)構(gòu)、存儲(chǔ)、計(jì)算、性能能耗等方面,提高了人工智能應(yīng)用的精度和效率。
2023-08-24 17:26:02
8634 從線上購物時(shí)的“猜你喜歡”、到高等級(jí)自動(dòng)駕駛汽車上的實(shí)時(shí)交通信息接收,再到在線視頻游戲,所有的這些都離不開人工智能(AI)加速器。AI加速器是一種高性能的并行計(jì)算設(shè)備,旨在高效處理神經(jīng)網(wǎng)絡(luò)等AI工作負(fù)載并提供近乎實(shí)時(shí)的處理方案,從而實(shí)現(xiàn)一系列應(yīng)用。
2023-11-18 10:36:30
3389 
在數(shù)字化工業(yè)的新浪潮中,西門子數(shù)字化工業(yè)軟件再次引領(lǐng)潮流,日前推出了名為Catapult? AI NN的革新性軟件,旨在為神經(jīng)網(wǎng)絡(luò)加速器在專用集成電路(ASIC)和芯片級(jí)系統(tǒng)(SoC)上實(shí)現(xiàn)高層次
2024-06-18 17:29:04
2336 西門子數(shù)字化工業(yè)軟件近日發(fā)布了Catapult AI NN軟件,這款軟件在神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)領(lǐng)域邁出了重要一步。Catapult AI NN軟件專注于在專用集成電路(ASIC)和芯片級(jí)系統(tǒng)(SoC)上實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的高層次綜合(HLS),為機(jī)器學(xué)習(xí)應(yīng)用提供了硬件加速的新途徑。
2024-06-19 11:27:22
1639 的需求,西門子數(shù)字化工業(yè)軟件日前推出了一款名為Catapult AI NN的創(chuàng)新軟件,旨在幫助神經(jīng)網(wǎng)絡(luò)加速器在專用集成電路(ASIC)和芯片級(jí)系統(tǒng)(SoC)上實(shí)現(xiàn)更高效的高層次綜合(HLS)。
2024-06-19 16:40:33
1459 隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強(qiáng)大的特征提取和分類能力,為圖像識(shí)別帶來了革命性的進(jìn)步。本文將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用案例,包括卷積神經(jīng)網(wǎng)絡(luò)(CNN)在面部識(shí)別、自動(dòng)駕駛、醫(yī)療診斷等領(lǐng)域的應(yīng)用,以及BP神經(jīng)網(wǎng)絡(luò)在手寫數(shù)字識(shí)別中的實(shí)踐。
2024-07-01 14:19:54
1630 在快速發(fā)展的科技領(lǐng)域,人工智能(Artificial Intelligence, AI)和神經(jīng)網(wǎng)絡(luò)(Neural Networks)是兩個(gè)備受矚目的概念。它們之間的聯(lián)系緊密而復(fù)雜,共同推動(dòng)了智能
2024-07-01 14:23:12
2229 神經(jīng)網(wǎng)絡(luò)和人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)是人工智能的一種重要實(shí)現(xiàn)方式,而人工智能則是神經(jīng)網(wǎng)絡(luò)應(yīng)用的廣泛領(lǐng)域。本文將介紹神經(jīng)網(wǎng)絡(luò)和人工智能的關(guān)系。 一、神經(jīng)網(wǎng)絡(luò)的定義和發(fā)展歷程 1.1 神經(jīng)網(wǎng)絡(luò)
2024-07-03 10:25:01
2663 神經(jīng)網(wǎng)絡(luò)芯片和普通芯片的區(qū)別是一個(gè)復(fù)雜而深入的話題,涉及到計(jì)算機(jī)科學(xué)、電子工程、人工智能等多個(gè)領(lǐng)域。 定義 神經(jīng)網(wǎng)絡(luò)芯片(Neural Network Processor,簡稱NNP)是一種專門用于
2024-07-04 09:30:03
3060 : 概述 人工智能神經(jīng)網(wǎng)絡(luò)芯片是一種新型的處理器,它們基于神經(jīng)網(wǎng)絡(luò)的計(jì)算模型,通過模擬人腦神經(jīng)元的連接和交互方式,實(shí)現(xiàn)對(duì)數(shù)據(jù)的高效處理。與傳統(tǒng)的CPU和GPU相比,神經(jīng)網(wǎng)絡(luò)芯片具有更高的計(jì)算效率和更低的功耗,特別適合處理
2024-07-04 09:33:37
2007 人工智能神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計(jì)算模型,其結(jié)構(gòu)和功能非常復(fù)雜。 引言 人工智能神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計(jì)算模型,其結(jié)構(gòu)和功能非常復(fù)雜。神經(jīng)網(wǎng)絡(luò)的研究始于20世紀(jì)40年代,經(jīng)過
2024-07-04 09:37:46
1885 人工智能是一門研究如何使計(jì)算機(jī)模擬人類智能行為的學(xué)科。它起源于20世紀(jì)40年代,當(dāng)時(shí)計(jì)算機(jī)科學(xué)家們開始嘗試開發(fā)能夠模擬人類思維過程的計(jì)算機(jī)程序。人工智能的目標(biāo)是通過計(jì)算機(jī)程序實(shí)現(xiàn)對(duì)人類智能的模擬,包括感知、學(xué)習(xí)、推理、規(guī)劃、交流等能力。 人工神經(jīng)網(wǎng)絡(luò)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的數(shù)學(xué)模型,
2024-07-04 09:39:25
2691 。 引言 人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)是人工智能領(lǐng)域的一個(gè)重要分支,它通過模擬人腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能,實(shí)現(xiàn)了對(duì)復(fù)雜數(shù)據(jù)的高效處理和智能決策。自20世紀(jì)40年代以來,神經(jīng)網(wǎng)絡(luò)系統(tǒng)已經(jīng)取得了顯著的研究成果和應(yīng)用成果,成為人
2024-07-04 09:42:36
1286 元之間的連接和信息傳遞機(jī)制,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的處理、模式識(shí)別及預(yù)測(cè)等功能。本文將通過幾個(gè)具體案例分析,詳細(xì)探討人工神經(jīng)網(wǎng)絡(luò)在不同領(lǐng)域的應(yīng)用,同時(shí)簡要介紹深度學(xué)習(xí)中的正則化方法,以期為讀者提供一個(gè)全面而深入的理解。
2024-07-08 18:20:47
1964 神經(jīng)網(wǎng)絡(luò)加速器是一種專門設(shè)計(jì)用于提高神經(jīng)網(wǎng)絡(luò)計(jì)算效率的硬件設(shè)備。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展和廣泛應(yīng)用,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和計(jì)算量急劇增加,對(duì)計(jì)算性能的要求也越來越高。傳統(tǒng)的通用處理器(CPU
2024-07-11 10:40:59
1728 神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)是人工智能領(lǐng)域的一個(gè)重要研究方向,旨在通過設(shè)計(jì)專門的硬件來加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和推理過程,提高計(jì)算效率和能效比。以下將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)的方法和技術(shù),并附上相關(guān)的代碼示例。
2024-07-15 10:47:48
3050 人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78002是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
2025-05-08 10:16:11
671 
人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78000是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
2025-05-08 11:42:17
819 
評(píng)論