chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>模擬技術(shù)>SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言

SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦
熱點推薦

基于JEDEC JEP183A標準的SiC MOSFET閾值電壓精確測量方法

閾值電壓 (Vth) 是 MOSFET (金屬氧化物半導(dǎo)體) 的一種基本的電學(xué)參數(shù)。閾值電壓 (Vth) 為施加到柵極的最小電壓,以建立MOSFET極端子之間的導(dǎo)電溝道。有幾種方法可以確定
2025-11-08 09:32:387048

導(dǎo)入柵極屏蔽結(jié)構(gòu) 溝槽MOSFET功耗銳減

更高系統(tǒng)效率和功率密度,是現(xiàn)今數(shù)據(jù)和電信電源系統(tǒng)設(shè)計的首要目標。為達此一目的,半導(dǎo)體開發(fā)商研發(fā)出采用柵極屏蔽結(jié)構(gòu)的新一代溝槽金屬氧化物半導(dǎo)體場效電晶體(MOSFET),可顯著降低全負載及輕負載
2014-03-25 11:07:154848

為什么需要注意SiC MOSFET柵極?

作者:Martin Warnke和Yazdi Mehrdad Baghaie 各種拓撲結(jié)構(gòu)SiC MOSFET的出現(xiàn)大大提高了性能和效率。但是,如果使用不當,工程師會很快發(fā)現(xiàn)自己對設(shè)備故障感到沮喪
2021-03-11 11:38:033365

SiC MOSFET學(xué)習筆記:各家SiC廠商的MOSFET結(jié)構(gòu)

當前量產(chǎn)主流SiC MOSFET芯片元胞結(jié)構(gòu)有兩大類,是按照柵極溝道的形狀來區(qū)分的,平面型和溝槽型。
2023-06-07 10:32:0719900

SiC MOSFET柵極驅(qū)動電路的優(yōu)化方案

在高壓開關(guān)電源應(yīng)用,相較傳統(tǒng)的硅MOSFET和IGBT,碳化硅(以下簡稱“SiC”)MOSFET有明顯的優(yōu)勢。使用硅MOSFET可以實現(xiàn)高頻(數(shù)百千赫茲)開關(guān),但它們不能用于非常高的電壓(>
2023-08-03 11:09:572587

MOSFET柵極的下拉電阻有什么作用

MOSFET柵極之間加一個電阻?這個電阻有什么作用?
2024-12-26 14:01:056179

MOSFET柵極閾值電壓Vth

(1)Vth是指當與漏之間有指定電流時,柵極使用的電壓; (2)Vth具有負溫度系數(shù),選擇參數(shù)時需要考慮。 (3)不同電子系統(tǒng)選取MOSFET管的閾值電壓Vth并不相同,需要根據(jù)系統(tǒng)的驅(qū)動
2025-12-16 06:02:32

MOSFET的基本結(jié)構(gòu)與工作原理

如圖2b、c和d所示。在實際應(yīng)用,一般不特指時的MOSFET都是增強型MOSFET,即在柵極不控制時,漏-之間可以承受正偏置電壓。 在圖1,點劃線框內(nèi)就是典型的MOS結(jié)構(gòu),或者稱為MOS柵
2024-06-13 10:07:47

MOSFET的重要特性–柵極閾值電壓

MOSFET的VGS(th):柵極閾值電壓MOSFET的VGS(th):柵極閾值電壓是為使MOSFET導(dǎo)通,柵極必需的電壓。也就是說,VGS如果是閾值以上的電壓,則MOSFET導(dǎo)通??赡苡?/div>
2019-05-02 09:41:04

SiC-MOSFET與Si-MOSFET的區(qū)別

電阻低,通道電阻高,因此具有驅(qū)動電壓柵極電壓Vgs越高導(dǎo)通電阻越低的特性。下圖表示SiC-MOSFET的導(dǎo)通電阻與Vgs的關(guān)系。導(dǎo)通電阻從Vgs為20V左右開始變化(下降)逐漸減少,接近
2018-11-30 11:34:24

SiC-MOSFET體二管特性

Si-MOSFET大得多。而在給柵極-施加18V電壓SiC-MOSFET導(dǎo)通的條件下,電阻更小的通道部分(而非體二管部分)流過的電流占支配低位。為方便從結(jié)構(gòu)角度理解各種狀態(tài),下面還給出了MOSFET的截面圖
2018-11-27 16:40:24

SiC-MOSFET功率晶體管的結(jié)構(gòu)與特征比較

”)應(yīng)用越來越廣泛。關(guān)于SiC-MOSFET,這里給出了DMOS結(jié)構(gòu),不過目前ROHM已經(jīng)開始量產(chǎn)特性更優(yōu)異的溝槽結(jié)構(gòu)SiC-MOSFET。具體情況計劃后續(xù)進行介紹。在特征方面,Si-DMOS存在
2018-11-30 11:35:30

SiC-MOSFET器件結(jié)構(gòu)和特征

  1. 器件結(jié)構(gòu)和特征  Si材料中越是高耐壓器件,單位面積的導(dǎo)通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)?! GBT
2023-02-07 16:40:49

SiC-MOSFET有什么優(yōu)點

1. 器件結(jié)構(gòu)和特征Si材料中越是高耐壓器件,單位面積的導(dǎo)通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-04-09 04:58:00

SiC-MOSFET的可靠性

確認現(xiàn)在的產(chǎn)品情況,請點擊這里聯(lián)系我們。ROHM SiC-MOSFET的可靠性柵極氧化膜ROHM針對SiC上形成的柵極氧化膜,通過工藝開發(fā)和元器件結(jié)構(gòu)優(yōu)化,實現(xiàn)了與Si-MOSFET同等的可靠性
2018-11-30 11:30:41

SiC-MOSFET的應(yīng)用實例

作的。全逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結(jié)構(gòu)SiC-MOSFET),組成相同尺寸的移相DCDC轉(zhuǎn)換器,就是用來比較各產(chǎn)品效率的演示機
2018-11-27 16:38:39

SiC MOSFET SCT3030KL解決方案

專門的溝槽柵極結(jié)構(gòu)(即柵極是在芯片表面構(gòu)建的一個凹槽的側(cè)壁上成形的),與平面SiC MOSFET產(chǎn)品相比,輸入電容減小了35%,導(dǎo)通電阻減小了50%,性能更優(yōu)異。圖4 SCT3030KL的內(nèi)部電路
2019-07-09 04:20:19

SiC MOSFET 開關(guān)模塊RC緩沖吸收電路的參數(shù)優(yōu)化設(shè)計

,基于 Si-IGBT 設(shè)計的緩沖吸收電路參數(shù)并不適用于 SiC-MOSFET 的應(yīng)用場合。為了使本研究不失一般性,本文從基于半結(jié)構(gòu)SiC-MOSFET 電路出發(fā),推導(dǎo)出關(guān)斷尖峰電壓和系統(tǒng)寄生參數(shù)以及緩沖
2025-04-23 11:25:54

SiC MOSFET的器件演變與技術(shù)優(yōu)勢

(MPS)結(jié)構(gòu),該結(jié)構(gòu)保持最佳場分布,但通過結(jié)合真正的少數(shù)載流子注入也可以增強浪涌能力。如今,SiC管非??煽?,它們已經(jīng)證明了比硅功率二管更有利的FIT率?! ?b class="flag-6" style="color: red">MOSFET替代品  2008年推出
2023-02-27 13:48:12

SiC MOSFET:經(jīng)濟高效且可靠的高功率解決方案

柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時的130A左右。即使碳化硅MOSFET的短路耐受時間短于IGTB的短路耐受時間,也可以通過集成在柵極驅(qū)動器IC的去飽和功能來保護SiC
2019-07-30 15:15:17

SiC SBD的器件結(jié)構(gòu)和特征

的快速充電器等的功率因數(shù)校正電路(PFC電路)和整流電路。2. SiC-SBD的正向特性SiC-SBD的開啟電壓與Si-FRD相同,小于1V。開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度
2019-03-14 06:20:14

SiC功率器件SiC-MOSFET的特點

1. 器件結(jié)構(gòu)和特征Si材料中越是高耐壓器件,單位面積的導(dǎo)通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-05-07 06:21:55

SiC功率模塊的柵極驅(qū)動其1

SiC-MOSFET的構(gòu)成,SiC-MOSFET切換(開關(guān))時高邊SiC-MOSFET柵極電壓產(chǎn)生振鈴,低邊SiC-MOSFET柵極電壓升高,SiC-MOSFET動作的現(xiàn)象。通過下面的波形圖可以很容易了解這是
2018-11-30 11:31:17

柵極加一個電阻的作用是什么

柵極之間加一個電阻,這個電阻起到什么作用?一是為場效應(yīng)管提供偏置電壓;二是起到瀉放電阻的作用:保護柵極G-S;
2019-05-23 07:29:18

柵極驅(qū)動器是什么

IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為集電極
2021-01-27 07:59:24

柵極驅(qū)動器是什么,為何需要柵極驅(qū)動器?

摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2021-07-09 07:00:00

拓撲結(jié)構(gòu)功率MOSFET驅(qū)動電路設(shè)計

結(jié)構(gòu)  引言   功率MOSFET以其開關(guān)速度快、驅(qū)動功率小和功耗低等優(yōu)點在中小容量的變流器得到了廣泛的應(yīng)用。當采用功率MOSFET拓撲結(jié)構(gòu)時,同一臂上的兩個功率器件在轉(zhuǎn)換過程,柵極驅(qū)動信號
2018-08-27 16:00:08

MOS管的開關(guān)電路柵極電阻和柵電阻是怎么計算的?

MOS管的開關(guān)電路柵極電阻R5和柵電阻R6是怎么計算的?在這個電路中有什么用。已知道VDD=3.7V,在可變電阻狀態(tài),作為開關(guān)電路是怎么計算R5和R6?
2021-04-19 00:07:09

N溝道和P溝道MOSFET的區(qū)別是什么

的生產(chǎn)成本也更低,因此價格更低,性能高于 p 溝道 MOSFET。在P溝道MOSFET,連接到正電壓,當柵極上的電壓低于某個閾值(Vgs 0)時,F(xiàn)ET導(dǎo)通。這意味著,如果您想使用 P 溝道
2023-02-02 16:26:45

【羅姆SiC-MOSFET 試用體驗連載】SiC開發(fā)板主要電路分析以及SiC Mosfet開關(guān)速率測試

,以及電壓進行采集,由于使用的非隔離示波器,就在單管上進行了對兩個波形進行了記錄:綠色:柵極電壓;黃色:電壓;由于Mosfet使用的SiC材料,通過分析以上兩者電壓的導(dǎo)通時間可以判斷出
2020-06-07 15:46:23

【羅姆SiC-MOSFET 試用體驗連載】羅姆第三代溝槽柵型SiC-MOSFET(之一)

導(dǎo)電溝道越大,則導(dǎo)通電阻越??;但是柵極驅(qū)動電壓太大的話,很容易將柵極和漏之間絕緣層擊穿,造成Mosfet管的永久失效;3.為了增加開關(guān)管的速度,減少開關(guān)管的關(guān)斷時間是有必要的;且為了提高Mosfet
2020-07-16 14:55:31

SiC mosfet選擇柵極驅(qū)動IC時的關(guān)鍵參數(shù)

和更快的切換速度與傳統(tǒng)的硅mosfet和絕緣柵雙極晶體管(igbt)相比,SiC mosfet柵極驅(qū)動在設(shè)計過程必須仔細考慮需求。本應(yīng)用程序說明涵蓋為SiC mosfet選擇柵極驅(qū)動IC時的關(guān)鍵參數(shù)。
2023-06-16 06:04:07

為何使用 SiC MOSFET

要充分認識 SiC MOSFET 的功能,一種有用的方法就是將它們與同等的硅器件進行比較。SiC 器件可以阻斷的電壓是硅器件的 10 倍,具有更高的電流密度,能夠以 10 倍的更快速度在導(dǎo)通和關(guān)斷
2017-12-18 13:58:36

什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

隨著電力電子技術(shù)的不斷進步,碳化硅MOSFET因其高效的開關(guān)特性和低導(dǎo)通損耗而備受青睞,成為高功率、高頻應(yīng)用的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性能和使用壽命
2025-01-04 12:37:34

從硅過渡到碳化硅,MOSFET結(jié)構(gòu)及性能優(yōu)劣勢對比

MOSFET柵極為低電平時,其漏電壓上升直至使SiC JFET的GS電壓達到其關(guān)斷的負壓時,這時器件關(guān)斷。Cascode結(jié)構(gòu)主要的優(yōu)點是相同的導(dǎo)通電阻有更小的芯片面積,由于柵極開關(guān)由Si MOSFET控制
2022-03-29 10:58:06

SiC模塊柵極誤導(dǎo)通的處理方法

和CN4的+18V、CN3和CN6的-3V為驅(qū)動器的電源。電路增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內(nèi)均可調(diào)整。將該柵極驅(qū)動器與全SiC功率模塊的柵極連接,來確認柵極電壓的升高情況
2018-11-27 16:41:26

功率MOSFET結(jié)構(gòu)及特點

2的結(jié)構(gòu),用深度來換面積,將柵極埋入基體,形成垂直的溝道,從而保持溝道的寬度,這樣形成的結(jié)構(gòu)稱為垂直導(dǎo)電的溝槽結(jié)構(gòu)。圖3:N溝道垂直導(dǎo)電的溝槽結(jié)構(gòu)及Rdson組成 工作原理是:柵極加正向電壓
2016-10-10 10:58:30

功率MOSFET柵極電荷特性

和漏電荷Qgs:柵極電荷柵極電荷測試的原理圖和相關(guān)波形見圖1所示。在測量電路,柵極使用恒流源驅(qū)動,也就是使用恒流源IG給測試器件的柵極充電,漏電流ID由外部電路提供,VDS設(shè)定為最大
2017-01-13 15:14:07

功率MOSFET結(jié)構(gòu)特點是什么?為什么要在柵極之間并聯(lián)一個電阻?

功率MOSFET結(jié)構(gòu)特點為什么要在柵極之間并聯(lián)一個電阻呢?
2021-03-10 06:19:21

基于MOSFET的整流器件設(shè)計方法

本帖最后由 liuyongwangzi 于 2018-5-30 10:03 編輯 使用整流器配置的四個二管是對AC電壓進行整流的最簡單、也是最常規(guī)的方法。在一個整流器運行一個
2018-05-30 10:01:53

如何使用電流驅(qū)動器BM60059FV-C驅(qū)動SiC MOSFET和IGBT?

驅(qū)動器的優(yōu)勢和期望,開發(fā)了一種測試板,其中測試了分立式IGBT和SiC-MOSFET。標準電壓驅(qū)動器也在另一塊板上實現(xiàn),見圖3?!     D3.帶電壓驅(qū)動器(頂部)和電流驅(qū)動器(底部)的半
2023-02-21 16:36:47

如何避免二整流器的導(dǎo)通損耗?

MOSFET很難在圖騰柱PFC拓撲的連續(xù)導(dǎo)通模式(CCM)下工作,因為體二管的反向恢復(fù)特性很差。碳化硅(SiCMOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-04-19 08:00:00

實現(xiàn)隔離柵極驅(qū)動器的設(shè)計基礎(chǔ)

的一個潛在問題是,僅有一個隔離輸入通道,而且依賴高壓驅(qū)動器來提供通道所需的時序匹配以及應(yīng)用所需的死區(qū)。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴結(jié)隔離來分離同一IC的上臂驅(qū)動電壓和下橋臂驅(qū)動
2018-10-16 16:00:23

實現(xiàn)隔離柵極驅(qū)動器的設(shè)計途徑

MOSFET柵極充電所需的高電流。在此,柵極驅(qū)動器以差分方式驅(qū)動脈沖變壓器的原邊,兩個副邊繞組驅(qū)動半的各個柵極。在這種應(yīng)用,脈沖變壓器具有顯著優(yōu)勢,不需要用隔離電源來驅(qū)動副邊MOSFET.  圖3.
2018-09-26 09:57:10

汽車類雙通道SiC MOSFET柵極驅(qū)動器包括BOM及層圖

描述此參考設(shè)計是一種通過汽車認證的隔離柵極驅(qū)動器解決方案,可在半配置驅(qū)動碳化硅 (SiC) MOSFET。此設(shè)計分別為雙通道隔離柵極驅(qū)動器提供兩個推挽偏置電源,其中每個電源提供 +15V
2018-10-16 17:15:55

溝槽結(jié)構(gòu)SiC-MOSFET與實際產(chǎn)品

本章將介紹最新的第三代SiC-MOSFET,以及可供應(yīng)的SiC-MOSFET的相關(guān)信息。獨有的雙溝槽結(jié)構(gòu)SiC-MOSFETSiC-MOSFET不斷發(fā)展的進程,ROHM于世界首家實現(xiàn)了溝槽柵極
2018-12-05 10:04:41

淺析SiC-MOSFET

MOS的結(jié)構(gòu)碳化硅MOSFETSiC MOSFET)N+區(qū)和P井摻雜都是采用離子注入的方式,在1700℃溫度中進行退火激活。一個關(guān)鍵的工藝是碳化硅MOS柵氧化物的形成。由于碳化硅材料中同時有Si和C
2019-09-17 09:05:05

測量SiC MOSFET柵-電壓時的注意事項

SiCMOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET結(jié)構(gòu)柵極電壓動作-前言”中介
2022-09-20 08:00:00

用于PFC的碳化硅MOSFET介紹

MOSFET的開關(guān)損耗為0.6 mJ。這大約是IGBT測量的2.5 mJ的四分之一。在每種情況下,均在 800 V、漏/拉電流 10 A、環(huán)境溫度 150 °C 和最佳柵極-發(fā)射閾值電壓下進行測試(圖
2023-02-22 16:34:53

碳化硅MOSFET是如何制造的?如何驅(qū)動碳化硅場效應(yīng)管?

柵極處獲得 20V,以便在最小 RDSon 時導(dǎo)通?! ‘斠?V關(guān)閉SiC MOSFET時,必須考慮一種效應(yīng),即Si MOSFET已知的米勒效應(yīng)。當器件用于配置時,這種影響可能會出現(xiàn)問題,尤其是
2023-02-24 15:03:59

設(shè)計中使用的電源IC:專為SiC-MOSFET優(yōu)化

輸入動作禁止功能)、過流保護、二次側(cè)電壓過壓保護等。在高耐壓應(yīng)用,與Si-MOSFET相比,SiC-MOSFET具有開關(guān)損耗及傳導(dǎo)損耗少、溫度帶來的特性波動小的優(yōu)點。這些優(yōu)點有利于解決近年來的重要課題
2018-11-27 16:54:24

降低二整流器的導(dǎo)通損耗方案

MOSFET很難在圖騰柱PFC拓撲的連續(xù)導(dǎo)通模式(CCM)下工作,因為體二管的反向恢復(fù)特性很差。碳化硅(SiCMOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-05-30 10:01:52

隔離柵極驅(qū)動器揭秘

IGBT/功率 MOSFET 是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2018-10-25 10:22:56

隔離柵極驅(qū)動器的揭秘

Sanket Sapre摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對
2018-11-01 11:35:35

驅(qū)動器引腳的 MOSFET 的驅(qū)動電路開關(guān)耗損改善措施

的影響,而且由于 RG_EXT 是外置電阻,因此也可調(diào)。下面同時列出公式(1)用以比較。能給我們看一下比較數(shù)據(jù)嗎?這里有雙脈沖測試的比較數(shù)據(jù)。這是為了將以往產(chǎn)品和具有驅(qū)動器引腳的 SiC MOSFET
2020-11-10 06:00:00

麥科信光隔離探頭在碳化硅(SiCMOSFET動態(tài)測試的應(yīng)用

。 圖中的波形從上往下依次為柵極電壓Vgs、漏電壓Vds和漏電流Ids。在測試過程SiC MOSFET 具有極快的開關(guān)速度,可在十幾納秒內(nèi)完成開關(guān)轉(zhuǎn)換。然而,由于高速開關(guān)過程中產(chǎn)生的電磁干擾(EMI
2025-04-08 16:00:57

柵極關(guān)斷阻抗的驅(qū)動電路

由于SiC MOSFET開關(guān)速度較快,使得電路串擾問題更加嚴重,這樣不僅限制了SiC MOSFET開關(guān)速度的提升,也會降低電力電子裝置的可靠性。針對SiC MOSFET的非開爾文結(jié)構(gòu)封裝
2018-01-10 15:41:223

SiCMOSFET的結(jié)構(gòu)詳細講解

下面給出的電路圖是在結(jié)構(gòu)中使用 SiC MOSFET 時最簡單的同步 boost 電路。該電路中使用的 SiC MOSFET 的高邊(HS)和低邊(LS)是交替導(dǎo)通的,為了防止 HS 和 LS
2020-12-07 22:44:0028

功率MOSFET,為什么要在柵極并聯(lián)一個電阻?資料下載

電子發(fā)燒友網(wǎng)為你提供功率MOSFET,為什么要在柵極并聯(lián)一個電阻?資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-03-29 16:49:3720

淺談柵極-電壓產(chǎn)生的浪涌

中,我們將對相應(yīng)的對策進行探討。關(guān)于柵極電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET結(jié)構(gòu)柵極電壓動作已進行了詳細說明。
2021-06-12 17:12:003577

柵極電壓產(chǎn)生的浪涌嗎?

忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-電壓,當SiC MOSFET本身的電壓和電流發(fā)生變化時,可能會發(fā)生意想不到的正浪涌或負浪涌,需要對此采取對策。 在本文中,我們將對相應(yīng)的對策進行探討。 什么是柵極電壓產(chǎn)生的
2021-06-10 16:11:442954

一文深入了解SiC MOSFET柵-電壓的行為

具有驅(qū)動器引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器引腳的TO-247N封裝SiC MOSFET產(chǎn)品相比,SiC MOSFET柵-電壓的行為不同。
2022-06-08 14:49:534312

結(jié)構(gòu)中低邊SiC MOSFET關(guān)斷時的行為

具有驅(qū)動器引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器引腳的TO-247N封裝產(chǎn)品相比,SiC MOSFET的柵-電壓的行為不同。
2022-07-06 12:30:422229

測量柵極之間電壓時需要注意的事項

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET結(jié)構(gòu)柵極電壓動作-前言”中介紹的需要準確測量柵極之間產(chǎn)生的浪涌。
2022-09-14 14:28:531289

測量SiC MOSFET柵-電壓時的注意事項

在這里,將為大家介紹在測量柵極之間的電壓時需要注意的事項。
2022-09-17 10:02:421967

電路的開關(guān)產(chǎn)生的電流和電壓

本文將介紹在SiC MOSFET這一系列開關(guān)動作SiC MOSFET的VDS和ID的變化會產(chǎn)生什么樣的電流和電壓。
2022-12-05 09:52:551552

第三代雙溝槽結(jié)構(gòu)SiC-MOSFET介紹

SiC-MOSFET不斷發(fā)展的進程,ROHM于世界首家實現(xiàn)了溝槽柵極結(jié)構(gòu)SiC-MOSFET的量產(chǎn)。這就是ROHM的第三代SiC-MOSFET。溝槽結(jié)構(gòu)在Si-MOSFET已被廣為采用,在SiC-MOSFET由于溝槽結(jié)構(gòu)有利于降低導(dǎo)通電阻也備受關(guān)注。
2023-02-08 13:43:213059

SiC MOSFET結(jié)構(gòu)柵極電壓動作-SiC MOSFET結(jié)構(gòu)

在探討“SiC MOSFET結(jié)構(gòu)Gate-Source電壓動作”時,本文先對SiC MOSFET結(jié)構(gòu)和工作進行介紹,這也是這個主題的前提。
2023-02-08 13:43:23971

SiC MOSFET結(jié)構(gòu)柵極-電壓動作-SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作

本文將針對上一篇文章中介紹過的SiC MOSFET結(jié)構(gòu)柵極驅(qū)動電路及其導(dǎo)通(Turn-on)/關(guān)斷( Turn-off)動作進行解說。
2023-02-08 13:43:231302

SiC MOSFET結(jié)構(gòu)柵極-電壓動作-電路的開關(guān)產(chǎn)生的電流和電壓

在上一篇文章,對SiC MOSFET結(jié)構(gòu)柵極驅(qū)動電路的導(dǎo)通(Turn-on)/關(guān)斷( Turn-off)動作進行了解說。
2023-02-08 13:43:23780

SiC MOSFET結(jié)構(gòu)柵極-電壓動作-低邊開關(guān)導(dǎo)通時的Gate-Source電壓動作

上一篇文章,簡單介紹了SiC MOSFET結(jié)構(gòu)柵極驅(qū)動電路的開關(guān)工作帶來的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細介紹SiC MOSFET在LS導(dǎo)通時的動作情況。
2023-02-08 13:43:231106

SiC MOSFET結(jié)構(gòu)柵極-電壓動作-低邊開關(guān)關(guān)斷時的柵極-電壓動作

上一篇文章中介紹了LS開關(guān)導(dǎo)通時柵極電壓動作。本文將繼續(xù)介紹LS關(guān)斷時的動作情況。低邊開關(guān)關(guān)斷時的柵極電壓動作:下面是表示LS MOSFET關(guān)斷時的電流動作的等效電路和波形示意圖。
2023-02-08 13:43:231163

SiC MOSFET柵極-電壓的浪涌抑制方法-浪涌抑制電路

在上一篇文章,簡單介紹了SiC功率元器件柵極-電壓中產(chǎn)生的浪涌。從本文開始,將介紹針對所產(chǎn)生的SiC功率元器件浪涌的對策。本文先介紹浪涌抑制電路。
2023-02-09 10:19:151757

SiC MOSFET柵極-電壓的浪涌抑制方法-正電壓浪涌對策

本文的關(guān)鍵要點:通過采取措施防止柵極電壓的正電壓浪涌,來防止LS導(dǎo)通時的HS誤導(dǎo)通。如果柵極驅(qū)動IC沒有驅(qū)動米勒鉗位用MOSFET的控制功能,則很難通過米勒鉗位進行抑制。作為米勒鉗位的替代方案,可以通過增加誤導(dǎo)通抑制電容器來處理。
2023-02-09 10:19:151943

SiC MOSFET柵極-電壓的浪涌抑制方法-負電壓浪涌對策

本文的關(guān)鍵要點?通過采取措施防止SiC MOSFET柵極電壓的負電壓浪涌,來防止SiC MOSFET的LS導(dǎo)通時,SiC MOSFET的HS誤導(dǎo)通。?具體方法取決于各電路中所示的對策電路的負載。
2023-02-09 10:19:161830

SiC MOSFET柵極-電壓的浪涌抑制方法-浪涌抑制電路的電路板布局注意事項

關(guān)于SiC功率元器件柵極電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET結(jié)構(gòu)柵極電壓動作已進行了詳細說明,如果需要了解,請參閱這篇文章。
2023-02-09 10:19:171679

低邊SiC MOSFET導(dǎo)通時的行為

本文的關(guān)鍵要點?具有驅(qū)動器引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器引腳的TO-247N封裝SiC MOSFET產(chǎn)品相比,SiC MOSFET柵-電壓的行為不同。
2023-02-09 10:19:20963

SiC MOSFET結(jié)構(gòu)及特性

SiC功率MOSFET內(nèi)部晶胞單元的結(jié)構(gòu),主要有二種:平面結(jié)構(gòu)和溝槽結(jié)構(gòu)。平面SiC MOSFET結(jié)構(gòu),
2023-02-16 09:40:105634

溝槽結(jié)構(gòu)SiC MOSFET幾種常見的類型

SiC MOSFET溝槽結(jié)構(gòu)柵極埋入基體形成垂直溝道,盡管其工藝復(fù)雜,單元一致性比平面結(jié)構(gòu)差。但是,溝槽結(jié)構(gòu)可以增加單元密度,沒有JFET效應(yīng),寄生電容更小,開關(guān)速度快,開關(guān)損耗非常低;而且
2023-02-16 09:43:013341

MOSFET主要作用

在N溝道MOSFET,極為P型區(qū)域,而在P溝道MOSFET,極為N型區(qū)域。在MOSFET的工作,是控制柵極電場的參考點,它是連接到-漏之間的電路,電流會從流入器件。通過改變柵極之間的電壓,可以控制和漏之間的電流流動。
2023-02-21 17:52:553591

SiC-MOSFET的體二管的特性

如圖所示,MOSFET(不局限于SiC-MOSFET)在漏-存在體二管。從MOSFET結(jié)構(gòu)上講,體二管是由-漏的pn結(jié)形成的,也被稱為“寄生二管”或“內(nèi)部二管”。對于MOSFET來說,體二管的性能是重要的參數(shù)之一,在應(yīng)用中使用時,其性能發(fā)揮著至關(guān)重要的作用。
2023-02-24 11:47:404750

溝槽結(jié)構(gòu)SiC-MOSFET與實際產(chǎn)品

SiC-MOSFET不斷發(fā)展的進程,ROHM于世界首家實現(xiàn)了溝槽柵極結(jié)構(gòu)SiC-MOSFET的量產(chǎn)。這就是ROHM的第三代SiC-MOSFET。
2023-02-24 11:48:181170

SiC MOSFET結(jié)構(gòu)柵極驅(qū)動電路

下面給出的電路圖是在結(jié)構(gòu)中使用SiC MOSFET時最簡單的同步boost電路。該電路中使用的SiC MOSFET的高邊(HS)和低邊(LS)是交替導(dǎo)通的,為了防止HS和LS同時導(dǎo)通,設(shè)置了兩個SiC MOSFET均為OFF的死區(qū)時間。右下方的波形表示其門信號(VG)時序。
2023-02-27 13:41:582279

電路的開關(guān)產(chǎn)生的電流和電壓

下面的電路圖是SiC MOSFET結(jié)構(gòu)的同步boost電路,LS開關(guān)導(dǎo)通時的示例。電路圖中包括SiC MOSFET的寄生電容、電感、電阻,HS和LS的SiC MOSFET的VDS和ID的變化帶來的各處的柵極電流(綠色線)。
2023-02-27 13:43:311436

什么是柵極電壓產(chǎn)生的浪涌

忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-電壓,當SiC MOSFET本身的電壓和電流發(fā)生變化時,可能會發(fā)生意想不到的正浪涌或負浪涌,需要對此采取對策。在本文中,我們將對相應(yīng)的對策進行探討。
2023-02-28 11:36:501615

溝槽結(jié)構(gòu)SiC MOSFET常見的類型

SiC MOSFET溝槽結(jié)構(gòu)柵極埋入基體形成垂直溝道,盡管其工藝復(fù)雜,單元一致性比平面結(jié)構(gòu)差。
2023-04-01 09:37:173263

測量SiC MOSFET柵-電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET結(jié)構(gòu)柵極電壓動作-前言”中介
2023-04-06 09:11:461833

R課堂 | SiC MOSFET柵極電壓的浪涌抑制方法-總結(jié)

布局注意事項。 結(jié)構(gòu)SiC MOSFET柵極信號,由于工作時MOSFET之間的動作相互關(guān)聯(lián),因此導(dǎo)致SiC MOSFET的柵-電壓中會產(chǎn)生意外的電壓浪涌。這種浪涌的抑制方法除了增加抑制電路外,電路板的版圖布局也很重要。希望您根據(jù)具體情況,參考本系列文章中介紹的
2023-04-13 12:20:022133

測量SiC MOSFET柵-電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET結(jié)構(gòu)柵極電壓動作-前言”中介
2023-05-08 11:23:141571

MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用?

是兩個重要的參數(shù),它們對電流的影響非常顯著。 首先,我們來討論MOSFET柵極電路電壓對電流的影響。在MOSFET,柵極電路的電壓控制著和漏之間的電流流動。當柵極電路的電壓為零時,MOSFET處于關(guān)閉狀態(tài),即沒有電流通過MOSFET。當柵極電路的電壓為正時,會形成一
2023-10-22 15:18:123845

結(jié)構(gòu)柵極-電壓的行為:關(guān)斷時

結(jié)構(gòu)柵極-電壓的行為:關(guān)斷時
2023-12-05 14:46:221105

結(jié)構(gòu)柵極-電壓的行為:導(dǎo)通時

結(jié)構(gòu)柵極-電壓的行為:導(dǎo)通時
2023-12-05 16:35:571015

如何選取SiC MOSFET的Vgs門電壓及其影響

如何選取SiC MOSFET的Vgs門電壓及其影響
2023-12-05 16:46:291783

SiC MOSFET結(jié)構(gòu)柵極電壓動作

SiC MOSFET結(jié)構(gòu)柵極電壓動作
2023-12-07 14:34:171189

SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作

SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作
2023-12-07 15:52:381285

SiC MOSFET結(jié)構(gòu)

SiC MOSFET結(jié)構(gòu)
2023-12-07 16:00:261150

MOSFET導(dǎo)通電壓的測量方法

的基本結(jié)構(gòu)和工作原理 MOSFET(Source)、漏(Drain)、柵極(Gate)和襯底(Substrate)四個部分組成。柵極與襯底之間有一層絕緣的氧化物層,稱為柵氧化物。當柵極電壓(Vg)高于閾值電壓(Vth)時,柵氧化物下方的襯底表面形成導(dǎo)電溝道,實現(xiàn)和漏之間的導(dǎo)通。
2024-08-01 09:19:552997

已全部加載完成