chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

鋰金屬電池中非活性鋰的氣體誘導(dǎo)形成

鋰電聯(lián)盟會長 ? 來源:新威 ? 2023-02-12 14:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

01

導(dǎo)讀

通過與液體電解質(zhì)的副反應(yīng)形成的非活性鋰導(dǎo)致鋰金屬電池的電池失效。為了抑制非活性鋰的形成和生長,需要進(jìn)一步了解非活性鋰的形成機(jī)理和組成。

02

成果簡介

近日,廈門大學(xué)楊勇教授等以碳酸乙烯酯為例,研究產(chǎn)氣反應(yīng)對非活性鋰形成的影響。碳酸亞乙酯是與石墨基負(fù)極一起使用的常見電解質(zhì)組分,但與鋰金屬負(fù)極不相容。作者使用質(zhì)譜滴定結(jié)合13C和2H同位素標(biāo)記,揭示了碳酸亞乙酯分解連續(xù)釋放乙烯氣體,乙烯氣體進(jìn)一步與鋰金屬反應(yīng)形成電化學(xué)非活性物質(zhì)LiH和Li2C2。

此外,計算模擬表明,氣體物質(zhì)可能導(dǎo)致鋰離子的不均勻分布,不利地增強(qiáng)枝晶和死Li的形成。通過優(yōu)化電解質(zhì)組成,作者選擇性地抑制乙烯氣體的形成,以限制鋰金屬負(fù)極的LiH和Li2C2的形成。

03

關(guān)鍵創(chuàng)新

使用同位素標(biāo)記的質(zhì)譜滴定(MST)技術(shù),作者證明了乙烯和鋰金屬可以反應(yīng)生成電化學(xué)惰性的LiH和碳化鋰(Li2C2)。通過合理設(shè)計電解液,作者證明了抑制乙烯的生成可以進(jìn)一步抑制LiH和Li2C2的生成。這一結(jié)論的普遍性也適用于石墨基負(fù)極。

04

核心內(nèi)容解讀

43f77316-aaa1-11ed-bfe3-dac502259ad0.png

1使用1 M LiPF6/EC:EMC電解質(zhì)的Cu||LiFePO4電池中LiH和氣體物種的演變。a非活性Li與D2O反應(yīng)生成氣體產(chǎn)物的質(zhì)譜圖。b 基于反應(yīng)2Li + 2D2O = 2LiOD + D2↑和LiH + D2O = LiOD + HD↑的死和LiH的質(zhì)譜滴定結(jié)果。cCu||LiFePO4電池在2.8 V和3.8 V之間以0.75mA cm-2循環(huán)的電壓曲線,以及H2(m/z = 2)和C2H4(m/z = 26)的相應(yīng)operando質(zhì)譜結(jié)果。

首先,作者采用MST技術(shù)作為定量方法,使用1M LiPF6/碳酸乙烯酯(EC):碳酸甲乙酯(EMC)作為基線電解質(zhì),研究了LiFePO4||Cu電池中形成的非活性鋰中LiH的演變。Operando質(zhì)譜儀(OMS)和MST結(jié)果表明LiH的形成和電解質(zhì)的分解是同時進(jìn)行的??紤]到有機(jī)電解質(zhì)是質(zhì)子的主要來源,這種同時發(fā)生的過程暗示了LiH的形成和C2H4的演化之間的潛在關(guān)聯(lián)。

44295232-aaa1-11ed-bfe3-dac502259ad0.png

2鋰金屬與乙烯的自發(fā)反應(yīng)。aH2O對非活性鋰的質(zhì)譜滴定結(jié)果。b C2H2(m/z = 26)和c HD (m/z = 3)的演變,分別代表Li2C2和LiH的積累過程。d未標(biāo)記EC和所有氘化EC (D4-EC)中形成的非活性Li的質(zhì)譜滴定結(jié)果。e在未標(biāo)記的EC、羰基碳標(biāo)記的EC (13C1-EC)和全碳標(biāo)記的EC (13C3-EC)中形成的非活性Li的質(zhì)譜滴定結(jié)果。

接下來,作者采用MST技術(shù)研究了在Cu||LiFePO4電池中形成的非活性鋰中Li2C2的存在和演變。作者對第1、第8和第20次循環(huán)后形成的非活性Li進(jìn)行了MST測量,發(fā)現(xiàn)Li2C2(圖2b)與LiH(圖2C)的演變模式相似。進(jìn)一步的研究表明Li2C2的形成主要與非羰基碳有關(guān),非羰基碳也源于C2H4。

因此,在未來的類似研究中,應(yīng)謹(jǐn)慎使用能夠產(chǎn)生C2H4的其他溶劑或添加劑,因?yàn)檫@可能導(dǎo)致額外形成LiH和Li2C2。LiH和Li2C2的其他形成機(jī)理可在今后的研究中進(jìn)一步探討。正如氟化鋰(LiF)在電池化學(xué)中有多種形成途徑,這在很大程度上取決于所使用的溶劑和添加劑。

443d62f4-aaa1-11ed-bfe3-dac502259ad0.png

3氣體對鋰金屬沉積的影響。銅表面附著氣泡時a Li+濃度和b電場分布的模擬。通過相控場模擬研究了氣泡對沉積鋰金屬形態(tài)演變的影響:c沒有氣泡,d氣泡附著在銅表面,以及e浮在銅箔上。

在水分解和CO2電還原系統(tǒng)中,氣泡會減少電化學(xué)活性面積并阻塞離子傳輸路徑,但是在鋰電池中氣泡對鋰沉積的影響很少被討論。這里,作者使用COMSOL模擬來探討氣泡對Li+濃度和電場分布的影響。結(jié)果表明,死鋰不僅可能在剝離過程中形成,而且氣泡的產(chǎn)生也將有助于死鋰的形成。

4454efd2-aaa1-11ed-bfe3-dac502259ad0.png

4通過電解液優(yōu)化抑制LiH和Li2C2。a Cu || LiFePO4電池的循環(huán)性能。在基線和LiODFB電解質(zhì)中形成的b Li2C2和(c) LiH的相應(yīng)滴定結(jié)果。

LiH和Li2C2的連續(xù)形成不僅導(dǎo)致活性鋰的損失,而且減緩了鋰離子的界面?zhèn)鬏?。作者的結(jié)果表明LiH和Li2C2的形成與乙烯的釋放高度相關(guān),乙烯的釋放被認(rèn)為主要來自EC的分解。因此,通過仔細(xì)選擇電解質(zhì)配方來抑制乙烯的形成是防止Li2C2和LiH進(jìn)一步形成的關(guān)鍵。作者研究發(fā)現(xiàn)使用LiODFB可以大大抑制EC分解。圖4a顯示了具有LiODFB基電解質(zhì)的Cu||LiFePO4電池的優(yōu)異循環(huán)性能,證明了LiODFB的保護(hù)效果。

446fe8f0-aaa1-11ed-bfe3-dac502259ad0.png

5提出了非活性鋰的三種形成過程,并用質(zhì)譜滴定法測定了它們的對應(yīng)量。a 通過(I)固態(tài)(ii)液體過程形成非活性鋰;(三)氣體過程:通過氣體物質(zhì)與鋰金屬之間的反應(yīng)形成非活性鋰。b基線電解質(zhì)中的非活性鋰分布。

非活性鋰的形成是電池失效的根本原因,這促使科研界探索非活性鋰的組成和形成過程,以便從源頭上抑制其形成。經(jīng)典SEI模型關(guān)注固液兩相界面。因此,非活性Li的形成一般源于兩個過程:(1)固態(tài)過程,只涉及固體(鋰金屬)的死Li的形成過程;(2)液體過程,其描述了通過Li金屬與液體電解質(zhì)之間的反應(yīng)形成SEI(圖5a)。然而,第三個過程: 氣體參與的非活性Li的形成卻很少被討論。本文中,作者首次用模擬和計算方法研究了氣體對非活性Li形成的影響。

05

成果啟示

該工作強(qiáng)調(diào)了一個被忽略的非活性鋰的形成途徑,這在電池研究中很少被討論并且缺乏全面的研究。作者相信這項工作將激發(fā)更多探索氣體對鋰電池和其他堿金屬電池(如可充電鈉電池)循環(huán)性能影響的新嘗試。








審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    827

    瀏覽量

    21226
  • OMS
    OMS
    +關(guān)注

    關(guān)注

    0

    文章

    20

    瀏覽量

    12508
  • 可充電電池
    +關(guān)注

    關(guān)注

    0

    文章

    64

    瀏覽量

    9302
  • 鋰金屬電池
    +關(guān)注

    關(guān)注

    0

    文章

    145

    瀏覽量

    4891

原文標(biāo)題:Nat. Commun.:鋰金屬電池中非活性鋰的氣體誘導(dǎo)形成

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯(lián)盟會長】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    億緯能亮相CBIS 2025動力電池應(yīng)用國際峰會

    11 月 16 日,第十屆動力電池應(yīng)用峰會(CBIS 2025)在上海成功舉辦,億緯能副總裁、乘用車電池產(chǎn)品線總裁何巍博士受邀出席,發(fā)表《大圓柱電池技術(shù)開發(fā)與全場景應(yīng)用進(jìn)展》主題演講
    的頭像 發(fā)表于 11-24 18:12 ?1002次閱讀

    金屬電池穩(wěn)定性能:解決固態(tài)電池界面失效的新策略

    固態(tài)電池因其高能量密度和增強(qiáng)的安全性而備受關(guān)注。然而,固體電解質(zhì)層與電極之間形成的空隙,已成為制約其長期穩(wěn)定運(yùn)行的關(guān)鍵障礙。如今,研究人員通過將一種電化學(xué)惰性且機(jī)械柔軟的金相相整合到金屬
    的頭像 發(fā)表于 10-23 18:02 ?1297次閱讀
    <b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>穩(wěn)定性能:解決固態(tài)<b class='flag-5'>電池</b>界面失效的新策略

    最近做了一款/鈉電瓶保護(hù)板設(shè)計,想分享給大家

    享。 之所以選輝芒微FT92051BC3來設(shè)計鉛改鈉12V電池,是因?yàn)槲野l(fā)現(xiàn)這款芯片做鉛改鈉有以下幾個很明顯的優(yōu)勢點(diǎn): 1、耐壓高:對于鉛改鈉12V
    發(fā)表于 10-22 13:53

    重要突破!中科院團(tuán)隊實(shí)現(xiàn)全固態(tài)金屬電池長循環(huán)壽命

    全固態(tài)金屬電池因其潛在的高能量密度和本征安全性,被視為下一代儲能技術(shù)的重要發(fā)展方向。然而,金屬負(fù)極與固態(tài)電解質(zhì)之間固-固界面的物理接觸失
    的頭像 發(fā)表于 10-09 18:05 ?566次閱讀
    重要突破!中科院團(tuán)隊實(shí)現(xiàn)全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>長循環(huán)壽命

    攻克無負(fù)極金屬電池難題的新鑰匙

    “終極選擇”的無負(fù)極金屬電池。這種電池在制造時直接使用銅箔作為負(fù)極基底,完全摒棄了傳統(tǒng)的石墨等負(fù)極活性材料。在充電時,鋰離子從正極析出并沉
    的頭像 發(fā)表于 09-11 18:04 ?506次閱讀
    攻克無負(fù)極<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>難題的新鑰匙

    突破快充瓶頸!Nature Energy揭示金屬電池電解質(zhì)設(shè)計新準(zhǔn)則

    【美能鋰電】觀察:隨著電動汽車對續(xù)航里程和充電速度的要求不斷提高,傳統(tǒng)鋰離子電池的能量密度和快充能力逐漸接近理論極限。金屬電池(LMBs)因其極高的理論容量而被視為下一代高能量密度
    的頭像 發(fā)表于 09-10 09:03 ?1164次閱讀
    突破快充瓶頸!Nature Energy揭示<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>電解質(zhì)設(shè)計新準(zhǔn)則

    高臨界電流密度固態(tài)電池單晶的合成

    金屬一直以來被認(rèn)為是高能量密度電池的理想負(fù)極材料。不幸的是,金屬負(fù)極在實(shí)際電流密度下容易形成
    的頭像 發(fā)表于 03-01 16:05 ?1507次閱讀
    高臨界電流密度固態(tài)<b class='flag-5'>電池</b>單晶<b class='flag-5'>鋰</b>的合成

    復(fù)旦彭慧勝/高悅Nature新突破:外部補(bǔ)技術(shù)革新電池性能破解缺難題

    的使用壽命。因此,缺材料被排除在電池設(shè)計之外,而當(dāng)活性鋰離子被消耗時,電池就會失效。 在此,復(fù)旦大學(xué)彭慧勝教授和高悅青年研究員等人通過一種電池
    的頭像 發(fā)表于 02-14 16:46 ?2264次閱讀
    復(fù)旦彭慧勝/高悅Nature新突破:外部補(bǔ)<b class='flag-5'>鋰</b>技術(shù)革新<b class='flag-5'>電池</b>性能破解缺<b class='flag-5'>鋰</b>難題

    清華大學(xué):自由空間對硫化物固態(tài)電解質(zhì)表面及內(nèi)部裂紋處沉積行為的影響

    全性的全固態(tài)金屬電池的最具潛力的候選電解質(zhì)材料之一。 盡管如此,仍有大量研究表明,即使在較低的電流密度下(0.5-1 mA/cm2),全固態(tài)金屬
    的頭像 發(fā)表于 02-14 14:49 ?718次閱讀
    清華大學(xué):自由空間對硫化物固態(tài)電解質(zhì)表面及內(nèi)部裂紋處<b class='flag-5'>鋰</b>沉積行為的影響

    全固態(tài)金屬電池的最新研究

    成果簡介 全固態(tài)金屬電池因其高安全性與能量密度而備受關(guān)注,但其實(shí)際應(yīng)用受限于的低可逆性、有限的正極載量以及對高溫高壓操作的需求,這主要源于固態(tài)電解質(zhì)(SSE)的低電壓還原和高電壓分
    的頭像 發(fā)表于 01-23 10:52 ?1556次閱讀
    全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的最新研究

    篩選理想的預(yù)化正極應(yīng)用于無負(fù)極金屬電池

    研究背景無負(fù)極金屬電池(AF-LMBs)在初始組裝過程中移除了負(fù)極側(cè)的,可以實(shí)現(xiàn)電芯層面的能量密度最大化,與此同時還具備成本和存儲優(yōu)勢。然而,在沒有負(fù)極側(cè)
    的頭像 發(fā)表于 12-24 11:07 ?1557次閱讀
    篩選理想的預(yù)<b class='flag-5'>鋰</b>化正極應(yīng)用于無負(fù)極<b class='flag-5'>金屬</b>鋰<b class='flag-5'>電池</b>

    半互穿網(wǎng)絡(luò)電解質(zhì)用于高電壓金屬電池

    研究背景 基于高鎳正極的金屬電池的能量密度有望超過400 Wh kg-1,然而在高電壓充電時,高鎳正極在高度去化狀態(tài)下,Ni4+的表面反應(yīng)性顯著增強(qiáng),這會催化正極與電解質(zhì)界面之間的
    的頭像 發(fā)表于 12-23 09:38 ?1708次閱讀
    半互穿網(wǎng)絡(luò)電解質(zhì)用于高電壓<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    離子液體添加劑用于高壓無負(fù)極金屬電池

    ? ? ? ?研究背景 基于雙(氟磺?;啺?b class='flag-5'>鋰(LiFSI)的濃縮電解質(zhì)已被提出作為無負(fù)極金屬電池(AFLMB)的有效兼容電解質(zhì)。然
    的頭像 發(fā)表于 12-10 11:00 ?2043次閱讀
    離子液體添加劑用于高壓無負(fù)極<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    鋰離子電池正極材料中摻雜位點(diǎn)的定量識別研究

    層和層,這種不同的摻雜位點(diǎn)分布對材料的氧活性和電化學(xué)性能產(chǎn)生顯著影響。該研究不僅揭示了摻雜元素在LLOs中的分布規(guī)律,還為通過共摻雜策略優(yōu)化LLOs的循環(huán)性能提供了新的思路,這對于提高鋰離子電池正極材料的性能具有重要意義。 研
    的頭像 發(fā)表于 12-05 09:39 ?1569次閱讀
    鋰離子<b class='flag-5'>電池</b>富<b class='flag-5'>鋰</b>正極材料中摻雜位點(diǎn)的定量識別研究

    高能金屬電池中的宏觀均勻界面層與鋰離子傳導(dǎo)通道

    ?? 研究簡介 大量的晶界固態(tài)電解質(zhì)界面,無論是自然產(chǎn)生的還是人為設(shè)計的,都會導(dǎo)致金屬沉積不均勻,從而導(dǎo)致電池性能不佳。基于此,北京航空航天大學(xué)宮勇吉教授和翟朋博博士、上??臻g電源研究所楊承博士
    的頭像 發(fā)表于 12-04 09:13 ?1705次閱讀
    高能<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池中</b>的宏觀均勻界面層與鋰離子傳導(dǎo)通道