傾佳電子SiC功率模塊在鋰電池供電三相四線制AI算力數(shù)據(jù)中心電源中的應(yīng)用價(jià)值深度分析報(bào)告
傾佳電子(Changer Tech)是一家專注于功率半導(dǎo)體和新能源汽車連接器的分銷商。主要服務(wù)于中國工業(yè)電源、電力電子設(shè)備和新能源汽車產(chǎn)業(yè)鏈。傾佳電子聚焦于新能源、交通電動化和數(shù)字化轉(zhuǎn)型三大方向,并提供包括IGBT、SiC MOSFET、GaN等功率半導(dǎo)體器件以及新能源汽車連接器。?
傾佳電子楊茜致力于推動國產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進(jìn)口IGBT模塊,助力電力電子行業(yè)自主可控和產(chǎn)業(yè)升級!
傾佳電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立功率半導(dǎo)體器件變革潮頭:
傾佳電子楊茜咬住SiC碳化硅MOSFET模塊全面取代IGBT模塊和IPM模塊的必然趨勢!
傾佳電子楊茜咬住SiC碳化硅MOSFET單管全面取代IGBT單管和大于650V的高壓硅MOSFET的必然趨勢!
傾佳電子楊茜咬住650V SiC碳化硅MOSFET單管全面取代SJ超結(jié)MOSFET和高壓GaN 器件的必然趨勢!
1. 引言
1.1 數(shù)據(jù)中心電源系統(tǒng)的挑戰(zhàn)與技術(shù)演進(jìn)
數(shù)據(jù)中心作為現(xiàn)代信息社會的核心基礎(chǔ)設(shè)施,其能耗問題日益凸顯,直接關(guān)系到運(yùn)營成本和環(huán)境可持續(xù)性。電能利用效率(PUE)是衡量數(shù)據(jù)中心能源效率的關(guān)鍵指標(biāo),而電源系統(tǒng)作為PUE的重要組成部分,其效率優(yōu)化尤為關(guān)鍵。傳統(tǒng)的電源系統(tǒng)路徑涉及多次交直流(AC/DC)和直交流(DC/AC)轉(zhuǎn)換,每一步轉(zhuǎn)換都會產(chǎn)生能量損耗,從而降低整體效率。為了應(yīng)對這一挑戰(zhàn),數(shù)據(jù)中心電源架構(gòu)正在從傳統(tǒng)的交流不間斷電源(UPS)向更高效率、更緊湊的高壓直流(HVDC)系統(tǒng)以及采用先進(jìn)半導(dǎo)體器件的新型UPS拓?fù)溲葸M(jìn)。
1.2 碳化硅(SiC)技術(shù)在UPS領(lǐng)域的崛起
碳化硅(SiC)作為一種寬禁帶(Wide-Bandgap, WBG)半導(dǎo)體材料,其卓越的物理特性使其在電力電子領(lǐng)域備受關(guān)注。與傳統(tǒng)的硅(Si)基器件相比,SiC具有更高的擊穿電場強(qiáng)度、更快的開關(guān)速度和更優(yōu)異的導(dǎo)熱性能 。這些特性直接轉(zhuǎn)化為功率轉(zhuǎn)換系統(tǒng)層面的優(yōu)勢,包括更低的傳導(dǎo)損耗和開關(guān)損耗、更高的工作頻率以及更強(qiáng)的功率密度。SiC技術(shù)已在電動汽車(EV)牽引逆變器和充電樁等高功率應(yīng)用中得到驗(yàn)證 ,其應(yīng)用范圍正迅速拓展至對效率和可靠性要求同樣嚴(yán)苛的數(shù)據(jù)中心UPS系統(tǒng) 。
1.3 傾佳電子報(bào)告目的與范圍
傾佳電子旨在超越對技術(shù)參數(shù)的簡單羅列,深入分析傾佳電子代理的基本半導(dǎo)體(BASiC Semiconductor)的兩款SiC功率模塊BMF008MR12E2G3和BMF240R12E2G3,在以鋰電池供電的三相四線制數(shù)據(jù)中心電源系統(tǒng)中的具體應(yīng)用價(jià)值。傾佳電子將從技術(shù)特性、系統(tǒng)集成、經(jīng)濟(jì)效益和可靠性等多個(gè)維度,系統(tǒng)性地評估這兩款模塊如何通過其固有的性能優(yōu)勢,與數(shù)據(jù)中心電源系統(tǒng)的演進(jìn)方向、鋰電池儲能技術(shù)的特點(diǎn)相協(xié)同,為用戶提供全面的價(jià)值主張和決策支持。傾佳電子將整合并分析所提供的技術(shù)文檔和行業(yè)資料,以建立一個(gè)嚴(yán)謹(jǐn)、客觀且富有洞察力的論證框架。
2. 數(shù)據(jù)中心電源架構(gòu)與需求解析
2.1 高壓直流(HVDC)與三相四線制拓?fù)涞膬?yōu)勢
數(shù)據(jù)中心傳統(tǒng)的交流供電路徑通常為:市電(AC)-> UPS整流器(AC/DC)-> 電池(DC)-> UPS逆變器(DC/AC)-> 服務(wù)器電源(AC/DC)-> 服務(wù)器芯片(DC)。這一過程中存在多次低效的能量轉(zhuǎn)換。高壓直流(HVDC)架構(gòu)通過將市電一次性轉(zhuǎn)換為800V左右的高壓直流,直接為所有IT設(shè)備供電,從而簡化了電源路徑,消除了冗余的交直流轉(zhuǎn)換環(huán)節(jié),顯著提升了從市電到負(fù)載的端到端效率 。
這一架構(gòu)的成功實(shí)施,很大程度上依賴于高壓、高效的功率半導(dǎo)體。基本半導(dǎo)體提供的兩款模塊額定電壓均為1200V ,這為800V直流母線提供了充足的電壓裕量,保障了系統(tǒng)的安全性和可靠性。SiC模塊的低損耗特性在高壓、高頻工況下表現(xiàn)更優(yōu),這使得HVDC架構(gòu)所帶來的效率優(yōu)勢能夠得到最大化體現(xiàn)。因此,SiC模塊并非僅僅是傳統(tǒng)IGBT的替代品,而是實(shí)現(xiàn)新一代HVDC供電架構(gòu)的核心使能技術(shù)。
此外,在數(shù)據(jù)中心復(fù)雜的負(fù)載環(huán)境中,非線性或不平衡負(fù)載普遍存在。傳統(tǒng)的電力系統(tǒng)拓?fù)淙魺o中性線,將無法有效處理不平衡負(fù)載電流。三相四線制拓?fù)洌◣е行跃€)因其能夠獨(dú)立控制每相的電流和功率,并提供零序電流通路,成為解決這一問題的關(guān)鍵 。這不僅有助于維持三相電壓的平衡,還能有效抑制諧波,確保供電質(zhì)量,這對于敏感的IT設(shè)備至關(guān)重要。
2.2 鋰電池在數(shù)據(jù)中心UPS中的價(jià)值主張
數(shù)據(jù)中心UPS的電池儲能系統(tǒng)正經(jīng)歷一場從傳統(tǒng)閥控式鉛酸(VRLA)電池向鋰電池的革命性轉(zhuǎn)變。鋰電池的引入不僅僅是簡單的技術(shù)升級,更是從根本上優(yōu)化了數(shù)據(jù)中心的運(yùn)營模式和總擁有成本(TCO)。
鋰電池相較于VRLA電池的關(guān)鍵優(yōu)勢包括:
更長的使用壽命:鋰電池的壽命可達(dá)8到10年,甚至更高,是VRLA電池的2到3倍,從而大幅減少了電池更換的頻率和相關(guān)的維護(hù)成本 。
更高的能量密度:鋰電池的體積和重量比VRLA電池分別減少約40-60%和60-70%,這極大地節(jié)省了寶貴的機(jī)房占地面積,使更多的空間可用于IT設(shè)備部署 。
更快的充電速度:鋰電池通??稍?小時(shí)內(nèi)充滿電,而VRLA電池則需10到12小時(shí),這對于頻繁的放電測試或短時(shí)斷電后的快速恢復(fù)至關(guān)重要 。
更寬泛的溫度耐受性:鋰電池能夠在比VRLA電池更高的環(huán)境溫度下(通常可達(dá)50°C)安全運(yùn)行,而不會出現(xiàn)顯著的性能下降 。
這兩款基本半導(dǎo)體SiC模塊與鋰電池儲能技術(shù)存在顯著的協(xié)同效應(yīng)。SiC模塊由于其固有的低損耗特性,在工作時(shí)產(chǎn)生的熱量遠(yuǎn)少于傳統(tǒng)硅基器件 。此外,SiC器件能夠耐受更高的結(jié)溫(最高工作結(jié)溫為175°C) 。將這一熱性能優(yōu)勢與鋰電池同樣優(yōu)異的寬泛溫度耐受性相結(jié)合,數(shù)據(jù)中心運(yùn)營者可以重新設(shè)定機(jī)房的冷卻溫度,減少對空調(diào)系統(tǒng)的依賴。這不僅直接降低了能源消耗,也進(jìn)一步減少了冷卻相關(guān)的運(yùn)營成本和碳足跡 。這種協(xié)同作用表明,SiC和鋰電池共同構(gòu)建了一個(gè)更高效、更耐用、更具成本效益的電源生態(tài)系統(tǒng)。
3. 基本半導(dǎo)體SiC模塊技術(shù)特性深度對比
3.1 核心電氣參數(shù)比較
下表1詳細(xì)對比了BMF008MR12E2G3和BMF240R12E2G3兩款SiC半橋模塊的關(guān)鍵電氣參數(shù),這些數(shù)據(jù)來源于其初步規(guī)格書。
表1:兩款SiC模塊核心參數(shù)對比表
參數(shù) | BMF008MR12E2G3 | BMF240R12E2G3 | 單位 | 備注 |
---|---|---|---|---|
額定電壓 (VDSS?) | 1200 | 1200 | V | - |
連續(xù)漏極電流 (ID?, TH?=80°C) | 160 | 240 | A | - |
典型導(dǎo)通電阻 (RDS(on).typ?, Tvj?=25°C) | 8.1 | 5.5 | mΩ | - |
典型導(dǎo)通電阻 (RDS(on).typ?, Tvj?=175°C) | 13.5 | 10.0 | mΩ | - |
總柵極電荷 (QG?, typ) | 401 | 492 | nC | VDS?=800V |
典型導(dǎo)通開關(guān)能量 (Eon?, Tvj?=150°C) | 2.3 | 5.7 | mJ | VDD?=600V/800V |
典型關(guān)斷開關(guān)能量 (Eoff?, Tvj?=150°C) | 0.6 | 1.7 | mJ | VDD?=600V/800V |
結(jié)到殼體熱阻 (Rth(j?c)?, max) | 0.13 | 0.09 | K/W | 每顆開關(guān) |
3.2 開關(guān)特性與損耗管理
從表1可以看出,BMF240R12E2G3在連續(xù)漏極電流和導(dǎo)通電阻上均優(yōu)于BMF008MR12E2G3,這表明其在處理大電流和降低傳導(dǎo)損耗方面更具優(yōu)勢。然而,其總柵極電荷 (QG?) 和開關(guān)能量(Eon?,Eoff?)也明顯更高。這種看似矛盾的特性,實(shí)際上揭示了兩款模塊在設(shè)計(jì)上的戰(zhàn)略性權(quán)衡。
功率模塊的導(dǎo)通電阻 (RDS(on)?) 與其內(nèi)部SiC芯片的面積通常呈反比關(guān)系。為了實(shí)現(xiàn)更高的額定電流和更低的傳導(dǎo)損耗,BMF240可能采用了更大面積的芯片或更多的芯片并聯(lián)。然而,芯片面積的增大也伴隨著寄生電容(Ciss?,Coss?,Crss?)的增加,進(jìn)而導(dǎo)致總柵極電荷 (QG?) 的增大。在每次開關(guān)動作中,對這些寄生電容的充放電和對柵極電荷的驅(qū)動都會消耗能量,從而造成開關(guān)損耗。因此,更大的芯片面積在降低傳導(dǎo)損耗的同時(shí),也必然會提高開關(guān)損耗。
這種技術(shù)權(quán)衡決定了兩款模塊不同的應(yīng)用定位:
BMF240R12E2G3 適用于傳導(dǎo)損耗占主導(dǎo)地位的大功率、低頻或工頻開關(guān)場景。在這種工況下,持續(xù)的大電流使得I2R傳導(dǎo)損耗成為主要的能量消耗,因此其更低的R_{DS(on)}能夠帶來顯著的效率提升。
BMF008MR12E2G3 則更適合于對開關(guān)頻率要求較高,或負(fù)載波動較大的中等功率場景。其較低的開關(guān)損耗使其在高頻工作下仍能保持高效率,從而減小無源器件的尺寸,有助于實(shí)現(xiàn)更緊湊的系統(tǒng)設(shè)計(jì)。
電源設(shè)計(jì)工程師可以根據(jù)具體的負(fù)載工況,對傳導(dǎo)損耗和開關(guān)損耗進(jìn)行精確的權(quán)衡,從而選擇最適合的模塊,以實(shí)現(xiàn)系統(tǒng)效率的最大化。
3.3 熱管理與封裝可靠性
除了電氣性能,功率模塊的封裝技術(shù)對其可靠性和系統(tǒng)集成度至關(guān)重要?;景雽?dǎo)體的這兩款模塊在封裝上采用了多項(xiàng)先進(jìn)技術(shù):
氮化硅(Si?N?)陶瓷基板:功率模塊內(nèi)部的絕緣基板直接影響其散熱和機(jī)械性能。Si3?N4?基板提供了優(yōu)于傳統(tǒng)氧化鋁(Al?O?)和氮化鋁(AlN)基板的綜合性能,包括出色的熱導(dǎo)率、高機(jī)械強(qiáng)度和優(yōu)異的抗熱震性 。這些特性增強(qiáng)了模塊的功率循環(huán)能力(power cycling capability),保障了其在持續(xù)高功率、大溫差循環(huán)下的長期可靠性。優(yōu)秀的散熱性能使得模塊能夠工作在更高的功率密度下,從而減小了所需的散熱器尺寸,進(jìn)一步為系統(tǒng)小型化創(chuàng)造了條件。
壓接(Press-FIT)技術(shù):該技術(shù)是一種無需焊接的強(qiáng)制配合連接技術(shù) 。與傳統(tǒng)的焊接連接相比,壓接技術(shù)避免了高溫焊接過程中可能產(chǎn)生的熱應(yīng)力,并且其連接可靠性被認(rèn)為比焊接高出10倍以上 。在數(shù)據(jù)中心這種對可靠性要求極高的應(yīng)用中,壓接技術(shù)的價(jià)值尤為凸顯。它不僅提高了生產(chǎn)效率和良品率,更重要的是,它允許在現(xiàn)場進(jìn)行快速、無熱應(yīng)力的模塊更換,極大地簡化了維護(hù)流程,縮短了平均修復(fù)時(shí)間(MTTR),從而提升了系統(tǒng)的可用性。
4. SiC模塊在目標(biāo)應(yīng)用中的協(xié)同價(jià)值分析
4.1 效率提升與運(yùn)營成本節(jié)約
SiC模塊的低損耗特性對數(shù)據(jù)中心運(yùn)營成本的影響是革命性的。電源系統(tǒng)的效率提升直接轉(zhuǎn)化為電能消耗的減少,進(jìn)而降低運(yùn)營成本和PUE值。
表2:SiC與傳統(tǒng)Si器件在UPS應(yīng)用中的性能對比
性能維度 | SiC功率模塊 | 傳統(tǒng)Si基IGBT模塊 | 價(jià)值主張 |
---|---|---|---|
效率 | 極低傳導(dǎo)與開關(guān)損耗,尤其在高頻和部分負(fù)載工況下 | 高開關(guān)損耗,且在低負(fù)載時(shí)因“膝點(diǎn)電壓”導(dǎo)致效率降低 | 效率提升直接降低電費(fèi),并減少散熱需求 |
功率密度 | 高頻工作使無源器件(電感、電容)小型化,封裝緊湊 | 受限于開關(guān)頻率,無源器件體積較大 | 節(jié)省寶貴機(jī)房空間,支持更高IT負(fù)載密度 |
熱管理 | 高結(jié)溫(175°C),低熱阻 | 較低結(jié)溫限制,熱阻通常較高 | 降低散熱系統(tǒng)投資和能耗,提高系統(tǒng)可靠性 |
可靠性 | 堅(jiān)固的材料特性,更強(qiáng)的功率循環(huán)能力,高壓接技術(shù) | 相對脆弱,尤其在高溫、高功率循環(huán)下易退化 | 延長系統(tǒng)壽命,減少維護(hù)和更換成本 |
總擁有成本 (TCO) | 初始投資較高,但運(yùn)營成本和維護(hù)成本顯著降低 | 初始投資較低,但運(yùn)營能耗和更換維護(hù)成本高昂 | 長期看TCO更低,回報(bào)期短 |
SiC模塊的效率優(yōu)勢在高壓、高功率的數(shù)據(jù)中心應(yīng)用中被放大。特別是,傳統(tǒng)IGBT器件的輸出特性曲線存在一個(gè)“膝點(diǎn)電壓” ,導(dǎo)致其在低負(fù)載(例如UPS的常用工況)下的傳導(dǎo)損耗相對較高。而SiC MOSFET的導(dǎo)通電阻在寬電流范圍內(nèi)保持線性,這意味著它在部分負(fù)載下也能保持高效率 。這種特性對于負(fù)載波動較大的數(shù)據(jù)中心至關(guān)重要,它確保了在任何工況下都能實(shí)現(xiàn)最佳能效。效率的每1%提升都意味著能耗的顯著降低,這在兆瓦級數(shù)據(jù)中心中可轉(zhuǎn)化為每年數(shù)百萬的電費(fèi)節(jié)省 。
4.2 功率密度提升與系統(tǒng)小型化
SiC器件具備更快的開關(guān)速度,允許電源系統(tǒng)工作在更高的開關(guān)頻率。這直接帶來的技術(shù)紅利是:實(shí)現(xiàn)相同性能所需的無源器件(如濾波器中的電感和電容)的體積可以大幅減小 。
在數(shù)據(jù)中心應(yīng)用中,這一優(yōu)勢與鋰電池的高能量密度形成了完美的協(xié)同。正如分析所示,鋰電池的體積比VRLA電池小40-60% ,本身就極大地節(jié)約了空間。當(dāng)UPS的逆變器和DC-DC轉(zhuǎn)換器等核心功率級也因SiC模塊的應(yīng)用而變得更緊湊時(shí),整個(gè)電源系統(tǒng)的功率密度(kW/m3)將實(shí)現(xiàn)質(zhì)的飛躍。這意味著在相同的機(jī)架或機(jī)房空間內(nèi),可以部署更大功率的UPS系統(tǒng),或者在提供相同功率時(shí),系統(tǒng)體積顯著縮小,從而將寶貴的機(jī)房空間更多地留給產(chǎn)生收益的IT設(shè)備。
4.3 可靠性與生命周期管理
在一個(gè)復(fù)雜的系統(tǒng)中,整體的可靠性往往取決于最薄弱的環(huán)節(jié)。傳統(tǒng)UPS的壽命通常受限于內(nèi)部的電解電容、風(fēng)扇和鉛酸電池等易損件。SiC模塊和鋰電池都從根本上提升了系統(tǒng)的耐久性。
SiC模塊的Si3?N4?基板和壓接技術(shù)確保了其在熱和機(jī)械應(yīng)力下的長期穩(wěn)定性 。同時(shí),鋰電池的長壽命優(yōu)勢使其能夠與SiC模塊的預(yù)期壽命相匹配。這種“雙長壽”的組合使得數(shù)據(jù)中心可以設(shè)計(jì)出生命周期更長、平均無故障時(shí)間(MTBF)更高的電源系統(tǒng)。更長的生命周期意味著更少的組件更換,更低的維護(hù)頻率,以及更高的系統(tǒng)可用性。
5. 市場背景與產(chǎn)品定位
5.1 全球及中國SiC功率模塊市場概況
全球SiC功率模塊市場正處于高速增長期,預(yù)計(jì)從2025年到2034年的復(fù)合年增長率(CAGR)將達(dá)到29.97% 。這一增長主要由電動汽車(EV)的快速普及所驅(qū)動,但其他應(yīng)用領(lǐng)域如太陽能、工業(yè)和數(shù)據(jù)中心也貢獻(xiàn)了強(qiáng)勁的增長勢頭 。
亞太地區(qū)在SiC市場中占據(jù)主導(dǎo)地位,特別是在制造業(yè)和市場份額方面,這得益于其完善的晶圓制造生態(tài)系統(tǒng)和旺盛的終端市場需求。中國作為全球最大的消費(fèi)電子和電動汽車市場,其SiC產(chǎn)業(yè)正受到國家和地方政府政策的大力扶持,致力于追趕國際領(lǐng)先水平 。這為基本半導(dǎo)體等本土企業(yè)提供了有利的市場環(huán)境和發(fā)展機(jī)遇。
5.2 產(chǎn)品定位與潛在應(yīng)用場景
根據(jù)前述的詳細(xì)技術(shù)分析,基本半導(dǎo)體的兩款SiC模塊展現(xiàn)出清晰的差異化定位,能夠滿足數(shù)據(jù)中心不同功率等級和應(yīng)用場景的需求:
BMF008MR12E2G3:其較低的開關(guān)損耗使其非常適合用于構(gòu)建模塊化UPS單元或高頻DC-DC轉(zhuǎn)換器。模塊化設(shè)計(jì)是數(shù)據(jù)中心供電的趨勢,其優(yōu)勢在于可擴(kuò)展性強(qiáng)、維護(hù)方便。BMF008的性能使其在輕載和高頻工況下表現(xiàn)卓越,適合于構(gòu)建高效率、靈活擴(kuò)展的電源模塊,滿足未來數(shù)據(jù)中心負(fù)載按需擴(kuò)展的需求。
BMF240R12E2G3:憑借其出色的連續(xù)大電流能力和更低的導(dǎo)通電阻,該模塊是大型中央U(xiǎn)PS系統(tǒng)的理想選擇。在百千瓦至兆瓦級的系統(tǒng)中,持續(xù)的大電流輸出使得傳導(dǎo)損耗成為主要的能源損耗來源。BMF240能夠最大限度地降低這部分損耗,從而為整個(gè)大型系統(tǒng)帶來顯著的效率增益,并降低長期運(yùn)營成本。
6. 結(jié)論與具體實(shí)施建議
6.1 合評估
基本半導(dǎo)體的BMF008MR12E2G3和BMF240R12E2G3 SiC功率模塊,在以鋰電池供電的三相四線制數(shù)據(jù)中心電源應(yīng)用中,展現(xiàn)出顯著的應(yīng)用價(jià)值。這些價(jià)值不僅僅體現(xiàn)在其優(yōu)異的電氣性能上,更在于其能夠與HVDC供電架構(gòu)、三相四線制拓?fù)湟约颁囯姵貎δ芗夹g(shù)形成強(qiáng)大的協(xié)同效應(yīng)。通過其低損耗特性、先進(jìn)封裝技術(shù)和對高溫的耐受性,這兩款模塊共同促成了系統(tǒng)級的高效率、高功率密度和高可靠性,并與鋰電池的長壽命、小體積優(yōu)勢相互增強(qiáng),最終顯著降低了數(shù)據(jù)中心的全生命周期總擁有成本(TCO)。
6.2 實(shí)施建議
傾佳電子(Changer Tech)是一家專注于功率半導(dǎo)體和新能源汽車連接器的分銷商。主要服務(wù)于中國工業(yè)電源、電力電子設(shè)備和新能源汽車產(chǎn)業(yè)鏈。傾佳電子聚焦于新能源、交通電動化和數(shù)字化轉(zhuǎn)型三大方向,并提供包括IGBT、SiC MOSFET、GaN等功率半導(dǎo)體器件以及新能源汽車連接器。?
傾佳電子楊茜致力于推動國產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進(jìn)口IGBT模塊,助力電力電子行業(yè)自主可控和產(chǎn)業(yè)升級!
傾佳電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立功率半導(dǎo)體器件變革潮頭:
傾佳電子楊茜咬住SiC碳化硅MOSFET模塊全面取代IGBT模塊和IPM模塊的必然趨勢!
傾佳電子楊茜咬住SiC碳化硅MOSFET單管全面取代IGBT單管和大于650V的高壓硅MOSFET的必然趨勢!
傾佳電子楊茜咬住650V SiC碳化硅MOSFET單管全面取代SJ超結(jié)MOSFET和高壓GaN 器件的必然趨勢!
基于傾佳電子的深度分析,為數(shù)據(jù)中心電源設(shè)計(jì)工程師和運(yùn)營者提出以下具體建議:
選型決策:在選擇模塊時(shí),應(yīng)基于對負(fù)載特性的全面評估。對于高頻或輕載工況,應(yīng)優(yōu)先考慮開關(guān)損耗較低的BMF008MR12E2G3;而對于持續(xù)大電流輸出的重載場景,則應(yīng)選擇傳導(dǎo)損耗更低的BMF240R12E2G3。
拓?fù)鋬?yōu)化:充分利用SiC模塊的高速開關(guān)特性,采用高頻脈寬調(diào)制(PWM)技術(shù)和優(yōu)化的電路布局,以最大化效率,并減小無源器件的尺寸,實(shí)現(xiàn)系統(tǒng)的小型化。
熱管理策略:重新審視傳統(tǒng)的冷卻設(shè)計(jì)。鑒于SiC模塊和鋰電池都能耐受較高的工作溫度,工程師可以考慮提高機(jī)房或電源柜的設(shè)定溫度,從而減少對能耗密集型冷卻系統(tǒng)的依賴。
維護(hù)與可靠性:利用壓接技術(shù)無需焊接即可更換的優(yōu)勢,建立簡化的現(xiàn)場維護(hù)流程。這一特性與鋰電池的長壽命共同作用,可大幅減少維護(hù)頻率和停機(jī)時(shí)間,保障數(shù)據(jù)中心的高可用性。
審核編輯 黃宇
-
鋰電池
+關(guān)注
關(guān)注
261文章
8510瀏覽量
181059 -
AI
+關(guān)注
關(guān)注
88文章
36969瀏覽量
289776 -
SiC
+關(guān)注
關(guān)注
32文章
3385瀏覽量
67171 -
功率模塊
+關(guān)注
關(guān)注
11文章
572瀏覽量
46458 -
算力
+關(guān)注
關(guān)注
2文章
1321瀏覽量
16382
發(fā)布評論請先 登錄
傾佳電子碳化硅在電網(wǎng)穩(wěn)定技術(shù)中的崛起:SVG拓?fù)溱厔菁?b class='flag-5'>SiC功率器件變革性價(jià)值的技術(shù)分析

傾佳電子代理的基本半導(dǎo)體驅(qū)動IC及電源IC產(chǎn)品力深度解析報(bào)告

傾佳電子技術(shù)報(bào)告:大功率礦機(jī)算力電源的拓?fù)浼軜?gòu)、SiC MOSFET應(yīng)用及其發(fā)展趨勢

傾佳電子技術(shù)報(bào)告:基本半導(dǎo)體34mm碳化硅(SiC)功率模塊產(chǎn)品線深度分析及在關(guān)鍵工業(yè)應(yīng)用中的技術(shù)潛力評估

傾佳電子SiC功率模塊:超大功率全橋LLC應(yīng)用技術(shù)優(yōu)勢深度分析報(bào)告

傾佳電子基于碳化硅(SiC)的雙向非隔離式Buck-Boost電源設(shè)計(jì)報(bào)告:儲能與數(shù)據(jù)中心應(yīng)用深度分析

傾佳電子新能源汽車主驅(qū)技術(shù)演進(jìn)與SiC碳化硅功率模塊的深度價(jià)值分析報(bào)告

傾佳電子深度洞察AIDC電源系統(tǒng)技術(shù)演進(jìn)與SiC MOSFET應(yīng)用價(jià)值分析

傾佳電子固態(tài)變壓器SST在數(shù)據(jù)中心的應(yīng)用及SiC MOSFET功率模塊的關(guān)鍵作用

BMF240R12E2G3 SiC MOSFET功率模塊打造三相四線制AI算力數(shù)據(jù)中心高頻UPS電源

評論