完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>
標(biāo)簽 > 接觸電阻
對導(dǎo)體間呈現(xiàn)的電阻稱為接觸電阻。 一般要求接觸電阻在10-20 mohm以下。 有的開關(guān)則要求在100-500uohm以下。有些電路對接觸電阻的變化很敏感。 應(yīng)該指出, 開關(guān)的接觸電阻是開關(guān)在若干次的接觸中的所允許的接觸電阻的最大值。
文章:124個 瀏覽:12526次 帖子:5個
在電力設(shè)備和電氣系統(tǒng)的安全運行中,兩項基礎(chǔ)而關(guān)鍵的測試技術(shù)始終發(fā)揮著重要作用——絕緣電阻試驗和接觸電阻試驗。盡管它們同屬電氣測試范疇,卻在原理、對象、設(shè)...
接觸電阻與TLM技術(shù)深度解密:從理論到實操,快速掌握精準(zhǔn)測量核心
Xfilm埃利測量專注于電阻/方阻及薄膜電阻檢測領(lǐng)域的創(chuàng)新研發(fā)與技術(shù)突破,致力于為全球集成電路和光伏產(chǎn)業(yè)提供高精度、高效率的量檢測解決方案。公司以核心技...
激光增強(qiáng)接觸優(yōu)化(JSIM)對TOPCon電池接觸電阻與濕熱穩(wěn)定性的雙重改善
Xfilm埃利測量通過高精度電阻檢測技術(shù)助力TOPCon電池工藝革新。針對傳統(tǒng)Ag/Al漿料在DH85濕熱環(huán)境下鋁腐蝕引發(fā)的接觸電阻暴增(ΔRs=13,...
Xfilm埃利測量作為電阻/方阻及薄膜電阻檢測領(lǐng)域的創(chuàng)新引領(lǐng)者,始終以核心技術(shù)創(chuàng)新驅(qū)動發(fā)展,專注于為集成電路、光伏及新能源產(chǎn)業(yè)提供高精度量測與檢測解決方...
采用傳輸線法(TLM)探究有機(jī)薄膜晶體管的接觸電阻可靠性及變異性
有機(jī)薄膜晶體管(TFTs)的高頻性能受限于接觸電阻(RC),尤其是在短通道L1cm2(V?s)條件下。即使采用相同材料和工藝,接觸電阻仍存在顯著的批次間...
從實驗室到應(yīng)用:半金屬與單層半導(dǎo)體接觸電阻的創(chuàng)新解決方案
金屬-半導(dǎo)體界面接觸電阻是制約半導(dǎo)體器件微縮化的關(guān)鍵問題。傳統(tǒng)金屬(如Ni、Ti)與二維半導(dǎo)體接觸時,金屬誘導(dǎo)帶隙態(tài)(MIGS)導(dǎo)致費米能級釘扎,形成肖...
基于四點探針和擴(kuò)展電阻模型的接觸電阻率快速表征方法
接觸電阻率(ρc)是評估兩種材料接觸性能的關(guān)鍵參數(shù)。傳統(tǒng)的傳輸長度法(TLM)等方法在提取金屬電極與c-Si基底之間的ρc時需要較多的制造和測量步驟。而...
基于傳輸線法TLM與隔離層優(yōu)化的4H-SiC特定接觸電阻SCR精準(zhǔn)表征
4H-碳化硅(4H-SiC)因其寬禁帶(3.26eV)、高熱導(dǎo)率(4.9W·cm?1·K?1)和高擊穿場強(qiáng)(2.5MV·cm?1),成為高溫、高功率電子...
消除接觸電阻的四探針改進(jìn)方法:精確測量傳感器薄膜方塊電阻和電阻率
方塊電阻是薄膜材料的核心特性之一,尤其在傳感器設(shè)計中,不同條件下的方塊電阻變化是感知測量的基礎(chǔ)。但薄膜材料與金屬電極之間的接觸電阻會顯著影響測量精度,甚...
面向硅基產(chǎn)線:二維半導(dǎo)體接觸電阻的性能優(yōu)化
隨著硅基集成電路進(jìn)入后摩爾時代,二維過渡金屬硫化物(TMDCs,如MoS?、WS?)憑借原子級厚度、優(yōu)異的開關(guān)特性和無懸掛鍵界面,成為下一代晶體管溝道材...
半導(dǎo)體歐姆接觸工藝 | MoGe?P?實現(xiàn)超低接觸電阻的TLM驗證
二維半導(dǎo)體因其原子級厚度和獨特電學(xué)性質(zhì),成為后摩爾時代器件的核心材料。然而,金屬-半導(dǎo)體接觸電阻成為限制器件性能的關(guān)鍵瓶頸。傳統(tǒng)二維半導(dǎo)體(如MoS?、...
傳輸線法(TLM)優(yōu)化接觸電阻:實現(xiàn)薄膜晶體管電氣性能優(yōu)化
本文通過傳輸線方法(TLM)研究了不同電極材料(Ti、Al、Ag)對非晶Si-Zn-Sn-O(a-SZTO)薄膜晶體管(TFT)電氣性能的影響,通過TL...
四探針法精準(zhǔn)表征電阻率與接觸電阻 | 實現(xiàn)Mo/NbN低溫超導(dǎo)薄膜電阻器
低溫薄膜電阻器作為超導(dǎo)集成電路的核心元件,其核心挑戰(zhàn)在于實現(xiàn)超導(dǎo)材料NbN與金屬電阻層Mo間的低接觸電阻(R?)。本文使用四探針法研究鉬(Mo)為電阻材...
接觸電阻與傳輸線法TLM技術(shù)深度解密:從理論到實操,快速掌握精準(zhǔn)測量核心
Flexfilm專注于電阻/方阻及薄膜電阻檢測領(lǐng)域的創(chuàng)新研發(fā)與技術(shù)突破,致力于為全球集成電路和光伏產(chǎn)業(yè)提供高精度、高效率的量檢測解決方案。公司以核心技術(shù)...
液態(tài)金屬接觸電阻精確測量:傳輸線法(TLM)的新探索
液態(tài)金屬(如galinstan)因高導(dǎo)電性、可拉伸性及生物相容性,在柔性電子領(lǐng)域備受關(guān)注。然而,其與金屬電極間的接觸電阻(Rc)測量存在挑戰(zhàn):傳統(tǒng)傳輸線...
基于厚度梯度設(shè)計的TOPCon多晶硅指狀結(jié)構(gòu),實現(xiàn)25.28%量產(chǎn)效率突破
隧穿氧化層鈍化接觸(TOPCon)技術(shù)作為當(dāng)前太陽能電池領(lǐng)域的核心技術(shù)之一,憑借其優(yōu)異的背面鈍化性能,在工業(yè)生產(chǎn)中實現(xiàn)了廣泛應(yīng)用。然而,多晶硅薄膜材料固...
TOPCon電池鋁觸點工藝:接觸電阻率優(yōu)化實現(xiàn)23.7%效率
隨著TOPCon太陽能電池市占率突破50%,其雙面銀漿消耗量(12–15mg/W)導(dǎo)致生產(chǎn)成本激增。本研究提出以鋁漿替代背面銀觸點,通過材料配方革新與工...
21.14%效率突破!MoO?基BC電池的接觸電阻與漏電協(xié)同優(yōu)化
硅異質(zhì)結(jié)(SHJ)太陽能電池憑借其優(yōu)異的鈍化性能和載流子選擇性接觸,已實現(xiàn)單結(jié)最高效率(26.81%)。然而,傳統(tǒng)背接觸(IBC)結(jié)構(gòu)因復(fù)雜的背面圖案化...
M12連接器如何做到低接觸電阻?4大核心保障技術(shù)全解析
M12連接器對于M12連接器,接觸電阻超標(biāo)會導(dǎo)致電壓驟降引發(fā)設(shè)備異常,局部過熱加速氧化,信號失真,電力中斷風(fēng)險驟增,電弧放電的安全隱患概率激增等。那么M...
TOPCon太陽能電池接觸電阻優(yōu)化:美能TLM測試儀助力LECO工藝實現(xiàn)25.97%效率突破
n-TOPCon太陽能電池因其獨特的超薄二氧化硅(SiOx)層和n+多晶硅(poly-Si)層而受到關(guān)注,這種設(shè)計有助于實現(xiàn)低復(fù)合電流密度(J0)和降低...
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
電機(jī)控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機(jī) | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機(jī) | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進(jìn)電機(jī) | SPWM | 充電樁 | IPM | 機(jī)器視覺 | 無人機(jī) | 三菱電機(jī) | ST |
伺服電機(jī) | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術(shù) | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |